
PLASMA: Private, Lightweight Aggregated Statistics against
Malicious Adversaries

Dimitris Mouris1⋆, Pratik Sarkar2⋆, and Nektarios Georgios Tsoutsos1

1 University of Delaware
{jimouris, tsoutsos}@udel.edu

2 Boston University
pratik93@bu.edu

Abstract. Private heavy-hitters is a data-collection task where multiple clients possess private bit
strings, and data-collection servers aim to identify the most popular strings without learning anything
about the clients’ inputs. In this work, we introduce PLASMA: a private analytics framework in the
three-server setting that protects the privacy of honest clients and the correctness of the protocol against
a coalition of malicious clients and a malicious server.
Our core primitives are a verifiable incremental distributed point function (VIDPF) and a batched
consistency check, which are of independent interest. Our VIDPF introduces new methods to validate
client inputs based on hashing. Meanwhile, our batched consistency check uses Merkle trees to validate
multiple client sessions together in a batch. This drastically reduces server communication across multiple
client sessions, resulting in significantly less communication compared to related works. Finally, we
compare PLASMA with the recent works of Asharov et al. (CCS’22) and Poplar (S&P’21) and compare
in terms of monetary cost for different input sizes.

Keywords: Function secret sharing, histograms, heavy hitters, privacy-enhancing technologies, secure
multiparty computation

⋆ The first two authors have equal contribution and appear in alphabetical order.
D. Mouris and N.G. Tsoutsos would like to acknowledge the support of the Electrical & Computer Engineering
department and the College of Engineering at the University of Delaware for supporting this research.
P. Sarkar is supported by NSF Awards 1931714, 1414119, and the DARPA SIEVE program.

Table of Contents

1 Introduction . 1
1.1 Our Contributions . 2
1.2 Related Work . 3

1.2.1 DPF-based . 3
1.2.2 Differential Privacy-based . 3
1.2.3 Sorting-based . 4
1.2.4 General MPC-based . 4

2 Preliminaries . 4
2.1 Threat Model . 4
2.2 Notation . 5
2.3 Distributed Point Functions (DPF) . 5

3 Technical Overview. 5
3.1 Histogram Protocol of Poplar . 5
3.2 Our Histogram Protocol . 6
3.3 Heavy-Hitters from T -Prefix Count . 8
3.4 T -Prefix Count Queries Oracle from VIDPF . 8

3.4.1 Verifiable Incremental DPF (VIDPF). 9
3.4.2 Implementing T -Prefix Count Queries. 9

4 Private Heavy Hitters . 11
5 Batched Consistency Check . 16
6 Experimental Evaluations . 16
7 Further Extensions . 19
8 Concluding Remarks . 19
A Variants of Distributed Point Functions . 22
B Verifiable Incremental DPF . 22
C Proof of Heavy-Hitters Protocol πHH . 24

C.1 Proof Sketch . 24
C.2 Formal Proof Details of Theorem 1 . 25

D Analysis of Batched Consistency check . 29
E Heavy Hitters with different Thresholds . 29
F Compatibility with Differential Privacy . 29
G Communication Cost of [4] . 30

1 Introduction

In today’s technology-driven world, companies are constantly collecting user data to perform analysis, compute
statistics, expose patterns in user behaviors, and apply them to improve their products [24, 29, 32, 14, 36].
Common analysis practices resort to histograms, where client data are aggregated together in predefined
and non-overlapping buckets. Each bucket may represent a quantitative range (e.g., salary) or a categorical
value (e.g., profession). The resulting histogram displays the frequencies of each bucket based on multiple
aggregated participant responses.

Private Histograms. When computing histograms, it is crucial to maintain client privacy, such as preventing
data collection servers from inferring additional information about the clients. Existing solutions for privacy-
preserving histograms solve this problem efficiently [17, 6, 10], given a relatively small number of buckets.
Nevertheless, histograms are resource-intensive on the server side when the goal is to find popular entries
among the clients’ inputs. For instance, assume clients that hold GPS coordinates of their location and
servers aiming to discover crowded areas without compromising client privacy. The naive solution of creating
a histogram over all possible inputs results in sparsely populated sets, which wastes server-side computational
power due to sparse inputs. Conversely, in an optimal solution, the server computation should scale with the
most popular inputs, instead of all possible ones.

Private Heavy-Hitters. This problem is addressed by the concept of “heavy hitters”. T -heavy hitters allow
computing the T most popular responses (for a given threshold T) among clients’ inputs and have a broad
range of applications: from finding popular websites that users visit or malicious URLs that cause browsers
to crash [28, 10], to discovering commonly used passwords [35], learning new words typed by users and
identifying frequently used emojis [25], to name a few. Private heavy-hitters allow computing these results
while also preserving client privacy. Existing protocols (such as [35, 10, 2, 8]) only focus on the “popular”
inputs and disregard other inputs that appear less than T times (i.e., they are pruned by the protocol).
This renders private heavy hitters a suitable candidate for finding the most common client entries, such as
computing crowded areas using client-provided GPS coordinates.

Table 1: Threat model comparisons, client input validation, and server-to-server communication.

Protocol

Correctness & Privacy
Against Malicious Corruption

Client
Input

Validation

Low
Server-to-Server
Communication

No. of
Servers

Clients Server Server & Clients

DPF [11, 12, 27] † 2+

Poplar (IDPF) [10] † 2

Bucketization (DP) [2] † 2-3

MPC-based [8] ‡ † 3

Sorting-based [4, 30] 3

PLASMA (this work) 3

† These works only preserve privacy against a malicious server but not correctness.
‡ [8] is susceptible to data poisoning attacks by malicious clients or malicious servers. Privacy of honest clients is
preserved.

Different Approaches. The literature considers the setting where two or more servers collect client inputs
and run the private heavy-hitters protocol. A notable approach is based on differential privacy (DP), and
the current state-of-the-art is [2] (we discuss DP-based solutions in Section 1.2). While these protocols are
computationally fast, an important drawback is that they are limited to DP-based privacy guarantees for the
client. Likewise, MPC-based solutions (such as [8]) employ general-purpose secure computation frameworks
(e.g., MP-SPDZ [31], SCALE-MAMBA [1], Sharemind [7]), so these methods fall short in terms of practicality.

1

Thus, recent works introduced custom MPC-based techniques for private heavy-hitters [4, 30]. The underlying
protocols perform secure sorting of client inputs under MPC [4, 30] and then aggregate the sorted data. This
guarantees that the clients’ inputs remain hidden when a majority of the servers are honest. However, all the
aforementioned solutions incur large server-to-server communication, with linear dependency on the total
number of clients, where the concrete communication cost is large.

Distributed point functions (DPFs) [11] offer an alternative approach for private histograms. Informally,
DPFs allow a client to send succinct shares of a point function corresponding to their private inputs to two
or more servers. The servers then use these shares to locally evaluate the function over the entire input space
and add the resulting outputs to obtain additive shares of a histogram.

Poplar [10] builds upon the DPF approach by introducing the notion of incremental DPF (IDPF), which is
detailed in Appendix A. Poplar provides an IDPF-based solution for the private heavy-hitter in the two-server
setting, and their server-to-server communication depends only on the input string length in the semi-honest
setting. For security against malicious clients, the servers validate every client’s input so that malformed
inputs are preemptively detected by the servers and discarded from the computation. This is referred to as
client input validation and it prevents a malicious client from causing an abort in the entire protocol. However,
Poplar requires additional checks to perform input validation against malicious clients, which causes the
server-to-server communication to scale linearly with the total number of clients. As a result, their concrete
server-to-server communication is large.

Motivation. Since all aforementioned solutions incur server-to-server communication that scales linearly
with the number of clients, where the concrete communication cost is large, they are prohibitive for most
real-world applications that require millions of clients for data collection. Hence, it is desirable that the
concrete server-to-server communication is low, even for a large number of clients. Likewise, neither Poplar
nor the DP-based solutions [2] tolerate additive attacks from a malicious server, which results in incorrect
outputs when one of the servers does not follow the protocol steps. More formally, they fail to provide both
correctness and privacy against the collusion of a malicious server and malicious clients. In this regard, we
ask the following motivating question:

Can we obtain a private heavy-hitters protocol with low concrete server-to-server communication that is
secure against malicious clients and a malicious server?

1.1 Our Contributions

We answer the aforementioned question by proposing PLASMA, a framework for private and lightweight
statistics that provides security against a malicious server and malicious clients. Our main contributions are
summarized as follows:

Verifiable incremental DPF (VIDPF). First, we introduce a new primitive called verifiable incremental
DPF (VIDPF), which builds upon incremental DPFs (IDPF) [10] and verifiable DPFs (VDPF) [20]. VIDPF
allows us to verify that clients’ inputs are valid by relying on hashing while preserving the client’s input
privacy. We also propose a novel way to verify that the IDPF keys are “one-hot” - i.e. they have a single
non-zero evaluation path (containing the same value along the path) by solely relying on hashing. This is of
independent interest since it can be used to improve earlier results in [10, 18]. Previous protocols (e.g., [10, 19])
solved the same problem using Zero-Knowledge [9] or expensive malicious sketching protocols involving
information-theoretic MACs [10, 18].

Batched Consistency Check. Next, we introduce a novel batched consistency check that allows us to
drastically reduce the server-to-server communication. At a high level, we validate the inputs of ℓ clients using
a Merkle tree and identify the malformed ones using logarithmic (in the total number of clients denoted as ℓ)
communication. This optimization reduces the dependency of our server-to-server communication on the total
number of clients from O(ℓ) to O(ℓ′(log2 ℓ

ℓ′)) number of hashes where there are ℓ′ malicious clients, yielding
a concrete improvement over the state-of-the-art (as reported in our experiments), even in the presence of
malicious clients. Our communication cost remains low even when a constant fraction (e.g., 10%) of the
clients are malicious.

2

PLASMA framework. We combine these new primitives to construct PLASMA, a protocol for private
histograms and heavy hitters in the three-server setting that guarantees security against a malicious server
and malicious clients while maintaining low server-to-server communication. PLASMA relies only on efficient
hashing and cheap field additions rather than expensive general-purpose MPC or field multiplications. Due to
our novel VIDPF primitive, PLASMA outperforms Poplar with regard to runtime by a factor of 2.1× over
WAN for T = 1% of the clients. In the same setting, our batched consistency check optimization enables
us to drastically outperform both Poplar and the sorting-based protocol of [4] in terms of server-to-server
communication by a factor of 35× and 45×, respectively. For these conditions, we further analyzed the
monetary cost of PLASMA, [4], and Poplar and report that PLASMA is 1.2− 1.4× and 2.5− 3.5× cheaper
than these works, respectively.

Applications. We evaluate PLASMA for two applications of private heavy hitters: one that detects frequently
visited URLs and another that identifies popular coordinates.

Popular URLs. A prominent application (discussed both in [4] and [10]) is identifying which URLs crash
the clients’ browsers more frequently. In this scenario, each client has a string of n bits that represents the
last URL that crashed their browser. In our evaluations (Section 6), we consider n = 256 bits, which is
sufficient for standard domain names. PLASMA computes the heavy hitter URLs that caused more than 1%
of client browsers to crash. We perform the task in 22 minutes for 106 clients while incurring less than 1 GB
of server-to-server communication ($1.82 in total cost).

Popular GPS coordinates. We demonstrate a new application where PLASMA identifies popular geo-
graphic locations without sacrificing user privacy. This can be beneficial with traffic avoidance, restaurant
recommendations, as well as advertising (e.g., businesses may identify crowded shopping areas and target their
marketing efforts), while ensuring the GPS coordinates of the users remain private to the servers. Likewise,
ride-sharing services can enhance vehicle distribution in busy areas and proactively dispatch more drivers
during rush hour. This is possible by encoding GPS coordinates as 64-bit strings using plus codes [33]. We
compute the heavy hitter plus codes for a threshold T = 1% in roughly 4 minutes across 106 clients while
incurring very minimal server-to-server communication, costing $0.41 as total monetary cost.

Extensions. We also discuss how to extend PLASMA to obtain fairness against a malicious adversary that
corrupts one server and an arbitrary number of clients. PLASMA is the first work to consider different
thresholds for heavy hitters based on pre-agreed prefixes by the servers, allowing for more elaborate private
statistics, such as the GPS application, where different coordinates (e.g. highways and suburban roads) have
different congestion thresholds.

1.2 Related Work

We now discuss relevant works for private heavy hitters. They can be classified into four main groups: those
based on DPFs, those based on differential privacy (DP), those based on MPC sorting, and finally those
based on general-purpose MPC. A comparison of our protocol with related works can be found in Table 1.

1.2.1 DPF-based Distributed point functions [11] offer a straightforward solution for private histograms
but they fail for heavy hitters due to the quadratic blowup in key size. This was addressed by Poplar [10], which
uses two non-colluding servers and introduces the notion of incremental DPFs to allow efficient evaluation of
strings based on prefixes. Poplar is robust against malicious clients but is susceptible to additive attacks by a
malicious server. In contrast, PLASMA provides security against both malicious clients and malicious server
by adding one additional server. Also, Poplar still leaks some information about the heavy hitter prefixes
to the servers as the servers reconstruct the roots of the paths before they prune them. On the other hand,
PLASMA performs a secure comparison over the secret shares and either keeps the node with its sub-tree if
T > count, or prunes the sub-tree.

1.2.2 Differential Privacy-based There is also a body of work based on local DP and randomized
responses to compute heavy hitters [37, 5, 38]. These techniques only involve a single server collecting data

3

from clients. Therefore, this method introduces a trade-off between utility and privacy, as it leaks some
information about the clients’ private data to the server. In contrast, other methods that provide stronger
privacy guarantees would require at least two not-colluding servers. Notably, secure computation-based
solutions can be modified to achieve DP either by using local DP or by adding a smaller amount of noise in
MPC and achieving higher data utility while maintaining privacy.

Likewise, bucketization [2] computes approximate statistics on a permuted version of the clients’ data
combined with dummy data that are sampled as differentially private noise. Bucketization ensures security
against malicious clients, and similarly to Poplar, it can only guarantee privacy without correctness in the
presence of a malicious server. In contrast, PLASMA focuses on exact statistics and provides both correctness
and privacy against both malicious clients and one malicious server.

1.2.3 Sorting-based Recent works in [4, 30] provide new secure sorting algorithms and construct private
heavy-hitter protocols based on the sorted data. They provide security against malicious servers and clients
in the three-server setting, where one of the servers can be malicious. However, these solutions incur heavy
communication overheads by performing a secure sort under MPC. Notably, PLASMA achieves a 45×
improvement in server-to-server communication compared to [4] as shown in Fig. 12 for T = 1%. Moreover,
our PLASMA protocol allows different thresholds for heavy hitters based on pre-agreed prefixes (allowing for
more elaborate statistics), this is not possible for sorting-based heavy-hitter protocols.

1.2.4 General MPC-based One could use generic MPC in the honest majority [26, 16] or dishonest
majority setting [31] to compute heavy hitters, but an efficient representation of the heavy-hitters problem
in terms of addition and multiplication gates is not known. In fact, the work by Böhler and Kerschbaum [8]
provides a generic MPC-based protocol for computing differentially private heavy hitters. They use MPC
frameworks like MP-SPDZ [31] and SCALE-MAMBA [1] to achieve semi-honest and malicious security, but
their solution suffers from high communication and slow runtime.

2 Preliminaries

In this section, we discuss the underlying cryptographic primitives and assumptions used for developing our
framework.

2.1 Threat Model

Our threat model assumes three non-colluding servers (S0,S1,S2) that run the histogram/heavy-hitters
protocol, as well as ℓ clients. The clients provide inputs to the servers and the servers do not have any private
input. We assume that an adversary A maliciously corrupts one of the servers and ℓ′ < ℓ clients.

Clients. Malicious clients may try to deviate from the protocol in order to disproportionally influence the
result or even completely corrupt the output of the protocol. PLASMA is robust against malicious clients and
PLASMA servers preemptively reject any malformed client input before incorporating it into the computation.

Servers. Similarly, a malicious server may try to deviate from the protocol steps and attempt to learn
private user inputs; PLASMA always protects input privacy against one malicious server. Another possible
attack for a malicious server would be to over-influence or corrupt the result of the protocol. The semi-honest
model does not protect correctness against malicious behavior by a server, which is problematic in real-world
applications, like advertisement measurements [14] between two companies, where one company may benefit
from reporting inflated measurements by introducing undetectable errors. Malicious security ensures that
such malicious behaviors are caught. Therefore, parties are forced to behave honestly, hence fostering a
transparent environment for computation. Poplar has this limitation while PLASMA protects correctness
against a malicious server. Hence, PLASMA is robust against a malicious server, since it protects both
correctness and privacy.

4

2.2 Notation

We denote the computational and statistical security parameters by κ and µ, respectively. Let PRG : {0, 1}κ →
{0, 1}2(κ+1) be a pseudorandom generator and Convert : {0, 1}κ → G be a map converting a random κ-bit

string to a pseudorandom group element of G. We use := for assignment,
R←− D for sampling from distribution

D, = for checking equality, and ∥ for concatenation. We define a public set X with m n-bit strings as
X := {x1, x2, . . . , xm} where the ith string is denoted as xi for i ∈ [m] and the jth bit in xi ∈ {0, 1}n is
denoted as xi,j for j ∈ [n]. We denote the first L bits of xi as xi,≤L := (xi,1, xi,2, . . . xi,L) for L ≤ n. Let Sb
denote the bth server, for b ∈ {0, 1, 2}; we consider b+ 1 := (b+ 1) mod 3 and b+ 2 := (b+ 2) mod 3. We
assume ℓ clients, each denoted as Ci for i ∈ [ℓ]. For an n-bit string a we represent its bit decomposition as
a1, . . . , an ∈ {0, 1}. Each client Ci has an n-bit input string αi ∈ X, for i ∈ [ℓ]. We use αi,1, . . . αi,n ∈ {0, 1}
to denote the bit representation of the client’s input αi.

2.3 Distributed Point Functions (DPF)

Function secret sharing (FSS) [11] enables splitting the output of a function f into additive shares, where
each share of the function is represented by a separate key. Each key allows the owner to efficiently generate
an additive share of the output f(x) on a given input x. DPFs are a special case of FSS where f is a point
function fα,β(x) := β if x = α, or 0 otherwise. A DPF consists of two algorithms: Gen and Eval. The Gen
algorithm takes as input the function fα,β and outputs two keys key0 and key1. The Eval algorithm evaluates
an input x such that Eval(0, key0, x) + Eval(1, key1, x) = β for x = α, and 0 for x ̸= α. Privacy ensures (α, β)
remains hidden from an adversary in possession of one of the keys (but not both). We discuss DPFs and other
stronger notions, such as incremental DPFs (IDPF) [10] and verifiable DPFs (VDPF) [20], in Appendix A.

3 Technical Overview

We recall the histogram and heavy-hitters protocol by Poplar [10] in Section 3.1. Then, we briefly describe
our histogram protocol in Section 3.2 as a stepping stone to our heavy-hitters protocol, which we describe in
Sections 3.3 and 3.4.

3.1 Histogram Protocol of Poplar

Poplar first considers the problem of computing private subset histograms. Each client holds an n-bit string
α and the servers S0, S1 have a small set X := {x1, x2, . . . , xm} of m n-bit strings. Each client secret shares
their input α using a DPF as (key0, key1) := DPF.Gen(1κ, α, 1,G). The client sends key0 to S0 and key1 to
S1. Upon receiving the keys, each server Sb evaluates the DPF on all the strings xi ∈ X and computes the
output share yb ∈ Fm by aggregating the evaluated values as yb :=

∑
xi∈X DPF.Eval(b, keyb, xi). The servers

perform the same protocol for multiple clients and aggregate the yb values in an accumulator Yb. Finally, the
servers exchange Y0 and Y1 to compute the output histogram as Y := Y0 + Y1. This protocol requires the
client to communicate one key to each server and the server-to-server communication is independent of the
number of clients since Y0 and Y1 are aggregated values. This protocol preserves client privacy.

However, a malicious client can double vote by generating the DPF keys maliciously such that it contains
more than one non-zero point or the DPF output at α is greater than 1. To tackle this, Poplar introduces a
malicious sketching protocol to ensure that the client inputs are well-formed. It also preserves the client’s
privacy against a malicious server. However, it allows a malicious server, say S0, to introduce additive
errors (e.g., δ ∈ Fm) in Y ′0 := Y0 + δ. That way, the output Y of the histogram would be biased by δ as
Y := Y ′0 + Y1 = Y0 + Y1 + δ. The honest server fails to detect such an additive attack, leading to an error in
the correctness of the protocol. Moreover, Poplar’s server-to-server communication scales linearly with O(ℓ)
due to the malicious sketching protocol.

5

3.2 Our Histogram Protocol

We address Poplar’s limitations by (1) introducing one additional server, (2) building upon the primitive of
verifiable DPF [20] (Appendix A), and (3) introducing novel consistency checks in the three-party setting.
We claim the following benefits over Poplar:

(a) Robustness against a collusion of a malicious server and malicious clients,

(b) Lightweight consistency checks for malicious behavior (using only symmetric operations and field addi-
tions),

(c) Server-to-server communication depends logarithmically on the total number of clients.

In fact, our work provides the first maliciously secure protocol whose server-to-server communication is
logarithmic in the total number ℓ of clients. Our servers communicate O(ℓ′(log2 ℓ

ℓ′)) hashes for the consistency
checks, where ℓ′ is the number of corrupt clients. Similar to Poplar, we ensure client input validation against
malicious clients (i.e., honest servers preemptively detect inconsistent client input and discard it). Here, we
present the ideas of our histogram protocol, which are crucial for our heavy-hitters protocol in Section 3.4.2.

Robustness Against a Malicious Server. The histogram protocol of Poplar is not robust against a
malicious server. Hence, we consider a third server S2 to allow an honest majority to obtain security against
one malicious server with improved efficiency. Each client runs three DPF sessions, one between each pair of
servers, with independent randomness, but the same input α (i.e., the pairwise evaluation of the DPF keys
on point α outputs secret shares of one).

However, adding a third server significantly complicates things as we need to ensure consistency between
the three sessions. For instance, we need to check that a malicious client submitted the same input α to all
three sessions without revealing it. The client sends the DPF keys for the sessions to the servers and each
server obtains two keys. Upon obtaining the DPF keys, each server evaluates the DPF on all input points in
X. It is ensured that if the client behaved honestly then at least one of the three sessions will be evaluated
honestly since two of the servers are honest. After aggregating all the clients’ inputs, the output histogram
is reconstructed across the three sessions. If the output is the same between each pair of servers then the
servers behaved honestly and that is considered as the output. If the output is inconsistent across a pair of
servers then one of the servers behaves maliciously (by launching an additive attack) and the honest servers
abort, which provides robustness against the malicious server.

Motivation for three servers. The three-server model is widely considered both in the industry and academia
as it ensures practical deployments with malicious security. Notable examples include the Interoperable Private
Attribution (IPA) proposal by Meta and Mozilla [14], JP Morgan’s PrimeMatch [36], NTT’s heavy-hitters
protocol [4], among others. The servers can be hosted by companies and non-profit organizations (e.g., as
mentioned in Section 5 of Google-Apple’s Covid Exposure system [3]). Table 1 compares our work with
state-of-the-art results.

Reducing Server-to-Server Latency. We empirically observed that the server-to-server latency increases
if there is pairwise communication between the three servers for consistency checks. There are three server-to-
server sessions for each client, and the third server S2 is involved in two of the three sessions: specifically,
sessions S1 −S2 and S2 −S0. The client generates (key(0,1), key(1,0)) for session S0 −S1, (key(1,2), key(2,1)) for
session S1 − S2, and (key(0,2), key(2,0)) for session S2 − S0. S0 receives key(0,1) and key(0,2) from the client for
sessions S0 − S1 and S2 − S0, respectively. S1 receives key(1,0) for session S0 − S1 and key(1,2) for S1 − S2,
while S2 receives key(2,1) and key(2,0) for sessions S1 − S2 and S2 − S0, respectively.

In our optimization, instead of running two sessions in each server, we run all three sessions between S0
and S1 and use S2 as the attestation server. By doing that, we significantly reduce the latency due to the
synchronization overhead of the three servers. To enable that, our protocol instructs the client to send key(2,1)
to server S0 and key(2,0) to server S1 respectively. The key distribution process by the client is illustrated in
Fig. 1.

Our optimization allows S0 to replicate the computation of S2 in session S1 −S2 (because they both have
key(2,1)) and S2 acts as an attestator by just sending hashes to S1 for the same messages that S0 should send.
These hashes prevent S0 from acting maliciously. Similar protocol steps are run by S2 to attest the S2 − S0

6

key(0,1), key(0,2), key(2,1)

key(1,0), key(1,2), key(2,0)

key(2,1), key(2,0)

Ci S1

S0

S2

Fig. 1: Distribution of session keys by client Ci.

session and prevent S1 (who is replicating S2) from acting maliciously. We summarize this attestation process
in Fig. 2. Overall, this optimization allows us to batch-verify all three sessions as a single session between S0
and S1 using hashes.

key(0,1) (S0 − S1) session key(1,0)

key(0,2) (S2 − S0) session key(2,0)

key(2,1) (S1 − S2) session key(1,2)

hashes for
(S2 − S0)

hashes for
(S1 − S2)

S0 S1

S2

Fig. 2: Session keys and attestation by S2.

Client Input Validation. The above protocol assumes that the client computes the DPF evaluation keys
honestly and sends them to the servers. A malicious client could construct malformed DPF keys such that the
client’s input gets counted more than once. To prevent this class of attacks, we propose a novel consistency
check that only relies on inexpensive symmetric operations, like hashing.

We first ensure that the DPF output is non-zero only at a single point. The work of [20] introduces
the primitive of verifiable DPF (VDPF), which we summarize in Appendix A. This is a stronger notion of
DPF, where the servers obtain a correctness proof π upon evaluating a pair of DPF keys on a given input
point. The two servers obtain the same proof π if the client generates the DPF keys honestly (i.e., the DPF
output is non-zero only at a single point α). Multiple proofs corresponding to different evaluation points are
batch-verified. Next, we ensure that the DPF output value at the non-zero point is indeed 1. Our protocol
instructs the servers to sum up all the output shares (corresponding to each point in X) of the client and
reconstruct the output. If the reconstructed output is not well-formed (i.e., is not 1), then the client’s input
is discarded. If the output is 1 (i.e., the client behaved honestly), then the DPF output shares are aggregated
by the server in the histogram share.

Client Input Consistency Across Sessions. A malicious client can provide inconsistent inputs across the
three server sessions by providing DPF keys for different points α1, α2, and α3 in each session respectively.
The verifiability of the VDPF fails to detect this attack since each individual VDPF in each session is valid.

To address the challenge, we propose a novel consistency check that relies on a single hash verification.
Let us denote Y(0,1), Y(0,2), and Y(2,1) be the output of the VDPF evaluation by S0 on keys key(0,1),
key(0,2), and key(2,1) corresponding to sessions S0 − S1, S0 − S2, and S2 − S1, respectively. Similarly, let us
denote Y(1,0), Y(2,0), and Y(1,2) be the output of the VDPF evaluation by S1 on keys key(1,0), key(2,0), and
key(1,2) corresponding to sessions S0 − S1, S0 − S2, and S2 − S1, respectively. By definition, reconstructing
each pair of secret shared outputs (e.g., Y(0,1), Y(1,0)) results in a vector of zeros except a single location.
Note that the client has also sent key(2,1) to S0 and key(2,0) to S1 respectively. Server S0 sends hash
h := H(Y(0,1) −Y(0,2) ∥Y(0,2) −Y(2,1)) to S1, who verifies that h = H(Y(2,0) −Y(1,0) ∥Y(1,2) −Y(2,0)). The
verification of the hash h ensures that the client’s input is consistent between: (1) the sessions S0 − S1 and
S0−S2, as well as (2) the sessions S0−S2 and S2−S1. By transitivity, all three sessions are consistent if the hash
verification succeeds. Observe that if the servers acted honestly,Y(0,1)+Y(1,0) = Y(0,2)+Y(2,0) = Y(1,2)+Y(2,1)

7

and thus, Y(0,1) −Y(0,2) = Y(2,0) −Y(1,0) and Y(0,2) −Y(2,1) = Y(1,2) −Y(2,0). Our novel check requires
additions (without any multiplications) and a cheap hash computation. The communication cost is one hash
of size κ bits. This leads to O(κℓ) server-server communication for ℓ clients, but it is optimized to logarithmic
communication by applying batched client verification, described in Section 5.

3.3 Heavy-Hitters from T -Prefix Count

Poplar reduced the problem of computing heavy hitters to the problem of computing prefix count queries
for a given prefix p ∈ {0, 1}∗ over client inputs. Then, they implemented prefix count queries by relying on
incremental DPFs (summarized in Appendix A). However, their protocol leaks the count of strings that
contain the T heavy-hitting prefix p due to the reliance on a prefix-count query oracle that outputs the exact
count. To mitigate this leakage, we introduce the notion of T -threshold prefix-count queries that return 1 if
at least T of clients’ input strings contain prefix p, otherwise, it returns 0. We define it as follows:

Definition 1 (T -Prefix-count Query Oracle Ωα1,...,αℓ
(p, T)). Return 1 (on input prefix p ∈ {0, 1}∗) if

prefix p appears at least T times in the clients’ input strings α1, α2, . . ., αℓ ∈ {0, 1}∗ where client Ci has
input string αi for i ∈ [ℓ], otherwise, return 0.

T -Heavy hitters. The T -heavy hitters algorithm (for threshold T) is provided with oracle Ωα1,...,αℓ
(p, T)

for computing T -prefix count for prefix p over the client input strings α1, . . . , αℓ. The initial prefix is the
empty string ϵ. At each level k, it considers the heavy-hitter prefixes p ∈ {0, 1}k of length in set HHk, which
contains the list of k-bit strings that appear at least k times. The algorithm performs a breadth-first search
of the prefix tree. It includes k + 1 bit length strings p ∥ 0 in HHk+1 if p ∥ 0 occurs at least T times in the
input strings (α1, . . . , αℓ), otherwise it gets pruned along its subtree. This is performed by querying the oracle
Ωα1,...,αℓ

(p ∥ 0, T). The same process is repeated for p ∥ 1. The algorithm repeats this for all k-bit strings in

HHk (which updates HHk+1 based on the search and pruning of set HHk). At the end of the breadth-first
search and pruning, the algorithm outputs the set of strings that are T -heavy hitters. Our formal algorithm
is presented in Fig. 3.

T -Heavy Hitters from T -prefix count queries

Parameters: Threshold T ∈ N and string length n ∈ N.
Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle Ωα1,...,αℓ

(p, t) for securely computing
t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of T -heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

– Init. HH≤n := {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn are empty sets.

– For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n− 1) and b ∈ {0, 1}:
If Ωα1,...,αℓ

(p ∥ b, T) = 1, HHk+1 := HHk+1 ∪ {p ∥ b}.
– Output T -heavy hitters HH≤n = {HH0,HH1, . . .HHn}.

Fig. 3: Algorithm for computing T -heavy hitters.

Cost Analysis. There are ℓ input strings in total. For any string of length k, there are at most ℓ/T candidate
heavy hitter strings. At each level k, the algorithm makes at most one oracle query per heavy hitter string.
Hence, the algorithm makes at most nℓ/T prefix-count oracle queries for n levels. If we set the threshold to
be a constant fraction of all input strings (e.g., T = 0.01ℓ), then the number of prefix-count queries are
independent of the number of input strings (e.g., nℓ/T = nℓ/0.01ℓ = 100n).

3.4 T -Prefix Count Queries Oracle from VIDPF

We realize the T -Prefix Count Query Oracle Ω(·, T) from Def. 1 by relying on a new verifiable incremental
DPF (VIDPF) primitive and using an ideal functionality FCMP (Fig. 7) for secure comparison.

8

3.4.1 Verifiable Incremental DPF (VIDPF). A DPF allows a client to succinctly share a vector of
size 2n with a single non-zero point. Meanwhile, an incremental DPF (introduced by Poplar and denoted as
IDPF) allows the client to succinctly secret share a path in the binary tree (used for representing 2n leaves
in binary format) and each node in the path can hold non-zero values. Our novel VIDPF primitive offers
strong integrity guarantees over IDPFs since the evaluation of the client keys also provides proofs (π1, . . . , πn)
to the servers ensuring that the VIDPF output is non-zero along a single path in the binary tree. It also
allows incremental evaluation of the VIDPF over an input x ∈ {0, 1}k, given state stk−1b and proof πk−1

b ,
corresponding to VIDPF evaluation of the first k − 1 bits of x. The incremental evaluation enables the party
possessing keyb to process one level and obtain the secret sharing of output f(x), a new state stkb , and a new
proof πk

b corresponding to the VIDPF evaluation of the path involving x. More formally, we capture the
high-level ideas of VIDPF using the following two algorithms:

– Gen(1κ, 1n, α, (β1, β2, . . . , βn),G)→ (key0, key1) : Given security parameter κ, input size n, input string
α ∈ {0, 1}n, and values β1, . . . , βn, the key generation algorithm outputs two VIDPF keys key0 and key1.

– EvalPref(b, keyb, x, st
k−1
b , πk−1

b)→ (stkb , yb, π
k
b) : Given a VIDPF key keyb and an input string x ∈ {0, 1}k

of length k ≤ n bits, the evaluation algorithm outputs an internal state stk, secret-shared value yb ∈ G,
and a proof πk

b ∈ {0, 1}∗.

Correctness of the VIDPF ensures that for all input points α ∈ {0, 1}n, output values β1, . . . , βn ∈ G,
VIDPF keys generated as (key0, key1) ← Gen(α, β1, β2, . . . , βn,G) and all values x ∈ {0, 1}k, where k ≤ n,
the following holds for all k ≤ n:

πk
0 = πk

1 and y = (y0 + y1) =

{
βk, if x is a prefix of α,

0, otherwise,

where (stk0 , y0, π
k
0) :=EvalPref(0, key0, x, st

k−1
0 , πk−1

0) and (stk1 , y1, π
k
1) :=EvalPref(1, key1, x, st

k−1
1 , πk−1

1). For
security guarantees, we require two additional properties from the VIDPF primitive:

– Input Privacy. The security of VIDPF guarantees that an adversarial evaluator in possession of either
key0 or key1 (but not both), does not learn anything about the input α or the outputs β1, . . . , βn of the
client.

– Verifiability. This property states that if two proofs (e.g., πk
0 and πk

1) are the same, then there is at most
one path of length k in the binary tree whose evaluation with (key0, key1) outputs (β

1, β2, . . . , βk). More
formally, for any k ∈ [n] there exists a single k-bit string x̃ ∈ {0, 1}k such that if πk

0 = πk
1 , then the

following holds:

(stk0 , y0, π
k
0) := EvalPref(0, key0, z, st

k−1
0 , πk−1

0)

(stk1 , y1, π
k
1) := EvalPref(1, key1, z, st

k−1
1 , πk−1

1)

y0 + y1 =

{
βk, if z = x̃,

0, if z = {0, 1}k \ {x̃},

where stk−10 , πk−1
0 and stk−11 , πk−1

1 are obtained by running the EvalPref algorithm on k− 1 bits of z. The
evaluators initialize st00 := st01 := 0 and π0

0 := π0
1 := 0.

We provide a construction of VIDPF in Figs. 14 and 15 (Appendix B) based on length doubling PRG in the
random oracle model. Next, we outline our protocol for securely implementing T -prefix count queries using
VIDPF and the comparison functionality FCMP.

3.4.2 Implementing T -Prefix Count Queries. Each client generates three pairs of VIDPF keys, one for
each pair of servers, with independent randomness but the same input point α and output values (1, . . . , 1).
The client sends the keys for the sessions to the respective servers (Fig. 1) as in our histogram protocol.

9

Basic Protocol. As depicted in Fig. 2, S1 replicates S2 in the S2−S0 session and S2 behaves as an attestator
for S1 by sending hashes of the messages that S1 should send. The hash prevents server S1 from acting
maliciously corresponding to the S2 −S0 session. Similar protocol steps are run by S2 for the session S1 −S2,
where S2 sends hashes to S1. Hence, S0 and S1 run three sessions, and S2 runs two of those sessions in
parallel. Next, we describe the protocol to compute a T -prefix count query on a string p ∥ 0 ∈ {0, 1}k (note,
the same process can be repeated for query string p ∥ 1). The servers S0 and S1 evaluate the VIDPF keys for
the three sessions on p ∥ 0 and obtain a secret share of the output yp∥0 and proof π. Ideally, yp∥0 should be
βk = 1 for an honest client. However, a malicious client could construct malformed VIDPF keys such that
the client’s input gets counted more than once.

Client Input Validation. We introduce the following consistency checks to validate a client’s input. Checks
1-3 ensure that the VIDPF keys are “one-hot”, i.e., they have a single non-zero evaluation path (containing 1
in this case, along the path), and check 4 ensures that the client input is consistent across the sessions:

– Check 1: The servers S0 and S1 first verify that the proofs π are the same for all three sessions. This
ensures that there is at most one path in the binary tree that is non-zero.

– Check 2: For the root level (i.e., k = 0), the servers evaluate the VIDPF keys on the empty string ϵ and
verify it is 1.

– Check 3: Finally, at the kth level, the servers need to verify that yp∥0 is either 0 or 1, without reconstructing
the output. We perform this check by observing that the output of the parent p should be the sum of the
outputs of p ∥ 0 and p ∥ 1. The servers evaluate the VIDPF keys on the parent string p and sibling (of
p ∥ 0) string p ∥ 1 to obtain secret shares of the output of yp and yp∥1 respectively. The servers reconstruct
yp−(yp∥0+yp∥1) and verify that it is 0. The first check ensures that at most one of yp∥0 or yp∥1 is non-zero.
Combining the two checks, we can conclude that either (yp∥0 = 0, yp∥1 = 1) or (yp∥0 = 1, yp∥1 = 0), since
at most one child can equal 1 when the parent holds a value of 1. Iterating this for all k levels ensures that
yp∥0 = 1 iff yp = 1 and yp∥1 = 0, else yp∥0 = 0. The servers also verify (using check 1) the corresponding
proofs π generated during the VIDPF evaluation along the path, to ensure there is at most one non-zero
path in the entire binary tree.

– Check 4: The servers also need to ensure that the client input is consistent across the three server sessions.
This is ensured by computing the difference of the reconstructed outputs across the sessions and verifying
that they are equal to 0 by matching their hash values. For more details, we defer to Section 4.

Output Phase. Once the client’s VIDPF output yp∥0 is verified, the secret shares of yp∥0 are aggregated
into counter cnty∥0. The servers repeat the above steps for all the clients in parallel to obtain secret shares
of yp∥0. The servers invoke the comparison functionality FCMP (Fig. 7) with the secret shares of cnt and
threshold T . FCMP reconstructs cnt and it outputs 1 if cnt ≥ T , otherwise, it outputs 0. This is returned by
the servers as the output of the T -prefix count oracle query response to the string y ∥ 0. The comparison
functionality FCMP is securely implemented using the state-of-the-art protocol of Rabbit [34].

Robustness Against a Malicious Server. The third server ensures that if the client behaves honestly
then at least one of the three sessions will be evaluated correctly since two of the servers are honest. After
aggregating all the client’s inputs, cnt is reconstructed across the three sessions by FCMP. If cnt is inconsistent
across any pair of servers then FCMP returns ⊥ indicating that one of the servers behaved maliciously by
launching an additive attack. This causes the honest servers to abort, providing robustness against the
malicious server. We observe that our protocol satisfies fairness (which is a stronger security notion than
selective abort) if FCMP is implemented using a fair protocol. We discuss this in Section 7.

Batched Client Verification. In our final protocol, we verify multiple client inputs at each level in one
batch. We batch all the clients’ VIDPF evaluations using a Merkle tree that has ℓ leaves for ℓ clients. First,
the servers check the equality of ℓ leaves by asserting that the Merkle roots are the same. If the roots match
then the leaves are the same, while if they differ then the servers recursively repeat the same process for each
of the two children of the parent node. Proceeding this way, the servers identify the malformed leaves on which
the two trees differ. This reduces the dependency of our server-to-server communication to O(ℓ′(log2 ℓ

ℓ′)), for
ℓ′ malicious clients, instead of O(ℓ). Formal details of this verification can be found in Section 5.

10

Functionality FHH

Parameters: Servers S0, S1, and S2, and ℓ clients Ci for i ∈ [ℓ]. Servers S0, S1, and S2 agree upon:

– A bound ℓ on the number of client submissions.

– A bound T on the threshold for heavy hitters.

Inputs: Servers S0,S1,S2 do not have any input. Clients Ci: A point αi ∈ {0, 1}n for i ∈ [ℓ]. αi,j represents the jth bit of αi.

Outputs: Init. HH≤n := {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}. Repeat for length of k bits, where k ∈ [0, . . . , n− 1] and for each

prefix p ∈ HHk:

– Update HHk+1 := HHk+1 ∪ (p ∥ b) if
∑ℓ

i=1

∣∣(αi,≤k+1 = (p ∥ b))
∣∣ ≥ T , for b ∈ {0, 1}.

FHH outputs the following:

– Servers S0,S1,S2: Set of T -heavy hitters HH≤n.
– Clients Ci: No output for i ∈ [ℓ].

Corruption: Adversary A maliciously corrupts one server and multiple clients together. A can perform the following:

– If A instructs the functionality to discard the jth client’s input then FHH discards αj from the output computation.

– If A instructs the functionality to abort at level k + 1 by sending (⊥, k + 1), then the functionality returns HH≤k to A and the
honest servers; additionally, the functionality instructs the honest servers to abort by sending ⊥.

Fig. 4: The ideal FHH functionality for T -heavy hitters.

4 Private Heavy Hitters

We provide the ideal functionality FHH for heavy-hitters between three servers and ℓ clients in Fig. 4. Adversary
A maliciously corrupts any one of the servers and multiple clients. If A has maliciously corrupted a server, it
can instruct FHH to discard an honest client’s input as part of its adversarial behavior. It can also instruct
the functionality to abort at a particular level k + 1. In this case, A and the honest servers receive the set of
all (that have not been discarded by A) k-bit heavy-hitting prefixes as output, and the functionality instructs
the honest servers to abort.

Our detailed protocol πHH that implements FHH appears in Figs. 5 and 6, while high-level ideas of our
protocol can be found in Sections 3.3 and 3.4. Our πHH protocol privately computes all the T -heavy-hitting
strings (and their heavy-hitting prefixes) given the input data of ℓ clients, while protecting the privacy
of the individual data points. πHH runs on three servers (S0,S1,S2) that utilize our verifiable incremental
DPF (VIDPF) protocol to privately aggregate the clients’ data points. Specifically, πHH runs three VIDPF
sessions, which guarantees security against a malicious server. Our protocol proceeds in three phases: a client
computation phase, a server computation phase, and an output phase.

Client Computation. During the client computation phase, each client C prepares three pairs of VIDPF
keys for their private data point α ∈ X, and output value (β1, . . . , βn) := (1, . . . , 1) along the path to α, using
independent randomness for each key generation. Employing three pairs of keys essentially allows us to run
three separate VIDPF sessions. S0 and S1 each have one key for each of the three sessions, while S2 acts as
a consistency checking server and shares one key with each of the other two servers. More specifically, the
client generates (key(0,1), key(0,2)) for S0, (key(1,0), key(1,2)) for S1, and (key(2,1), key(2,0)) for S2. The client
sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1, and (key(2,1), key(2,0)) to S2 as shown
in Fig. 1.

Server Computation. Each server first initializes a set of sets for heavy-hitter computation as HH≤n :=
{HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ, HH1, . . . ,HHn are empty sets and
HHk corresponds to the kth level. The servers start accepting VIDPF keys from the clients. As in our
histogram protocol, S2 acts as an attesting server for the sessions involving keys key(2,0) and key(2,1) by
sending hashes (depicted in Fig. 2). Next, for k ∈ [n] the servers perform the following:

(a) Initialization. For each k-bit heavy-hitting prefix p ∈ HHk, the servers initialize to 0 a cntp∥0 (resp.
cntp∥1) variable for each session to count the frequency of prefix p ∥ 0 (resp. p ∥ 1). Each server aggregates

11

– Input: Each client Ci has an input point αi ∈ X for i ∈ [ℓ].

– Output: The servers Sb (for b ∈ {0, 1, 2}) output the set of T -heavy hitters HH≤n := FHH(ℓ, T , {αi}i∈[ℓ]).

– Primitive: VIDPF := (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are random oracles.

1: Client C Computation. (Repeated for ℓ clients, each of which has their own private input α)

(a) Client C with input α prepares three pairs DPF keys with independent randomness u, v, w
R←− {0, 1}κ, as follows:

(key(0,1), key(1,0)) := Gen(1κ, 1n, α, (1, . . . , 1),G), (key(1,2), key(2,1)) := Gen(1κ, 1n, α, (1, . . . , 1),G),

(key(2,0), key(0,2)) := Gen(1κ, 1n, α, (1, . . . , 1),G)

(b) The client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2.
2: Server Computation.

– The servers initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn are
empty sets.

– Repeat the following steps for length of k bits, where k ∈ [0, . . . , n− 1]:

(a) Initialization. For prefix p ∈ HHk
b , servers initialize the aggregation variables for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows:

S0 sets cntγ
(0,1)

:= cntγ
(0,2)

:= cntγ
(2,1)

:= 0, S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0, S2 sets cntγ
(2,0)

:= cntγ
(2,1)

:= 0

(b) VIDPF Evaluation. For prefix p ∈ HH≤k
b , Server Sb computes: (Repeated for ℓ clients)

i. If (p = ∅): then S0 sets st∅(0,1) := π∅
(0,1)

:= st∅(0,2) := π∅
(0,2)

:= st∅(2,1) := π∅
(2,1)

:= ∅, Server S1 sets st∅(1,2) := π∅
(1,2)

:=

st∅(1,0) := π∅
(1,0)

:= st∅(2,0) := π∅
(2,0)

:= ∅. Server S2 sets st∅(2,0) := π∅
(2,0)

:= st∅(2,1) := π∅
(2,1)

:= ∅.

If (p ̸= ∅): then each server Sb retrieves the following states from memory corresponding to the internal states
of πVIDPF computation for prefix p: Server S0 retrieves (stp

(0,1)
, yp

(0,1)
, πp

(0,1)
), (stp

(0,2)
, yp

(0,2)
, πp

(0,2)
) and (stp

(2,1)
,

yp
(2,1)

, πp
(2,1)

). Server S1 retrieves (stp
(1,2)

, yp
(1,2)

, πp
(1,2)

), (stp
(1,0)

, yp
(1,0)

, πp
(1,0)

) and (stp
(2,0)

, yp
(2,0)

, πp
(2,0)

). Server

S2 retrieves (stp
(2,0)

, yp
(2,0)

, πp
(2,0)

) and (stp
(2,1)

, yp
(2,1)

, πp
(2,1)

).

ii. Each server Sb evaluates the VIDPF on the prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows and stores them in memory:

S0 computes (stγ
(0,1)

, y
γ
(0,1)

, π
γ
(0,1)

) := EvalPref(0, key(0,1), γ, st
p
(0,1)

, k, π
p
(0,1)

) and stores it in memory.

S0 computes (stγ
(0,2)

, y
γ
(0,2)

, π
γ
(0,2)

) := EvalPref(1, key(0,2), γ, st
p
(0,2)

, k, π
p
(0,2)

) and stores it in memory.

S1 computes (stγ
(1,2)

, y
γ
(1,2)

, π
γ
(1,2)

) := EvalPref(0, key(1,2), γ, st
p
(1,2)

, k, π
p
(1,2)

) and stores it in memory.

S1 computes (stγ
(1,0)

, y
γ
(1,0)

, π
γ
(1,0)

) := EvalPref(1, key(1,0), γ, st
p
(1,0)

, k, π
p
(1,0)

) and stores it in memory.

S2 and S1 compute (stγ
(2,0)

, y
γ
(2,0)

, π
γ
(2,0)

) := EvalPref(0, key(2,0), γ, st
p
(2,0)

, k, π
p
(2,0)

) and store them in memory.

S2 and S0 compute (stγ
(2,1)

, y
γ
(2,1)

, π
γ
(2,1)

) := EvalPref(1, key(2,1), γ, st
p
(2,1)

, k, π
p
(2,1)

) and store them in memory.

iii. If k = 1 : Servers compute the proof that the VIDPF evaluation at the root layer sums up to 1:

S0 sets h
∅
(0,1) := H1(∅, 1− y

0
(0,1) − y

1
(0,1)) and h

∅
(0,2) := H1(∅, y0

(0,2) + y
1
(0,2),),

S1 sets h
∅
(1,2) := H1(∅, 1− y

0
(1,2) − y

1
(1,2)) and h

∅
(1,0) := H1(∅, y0

(1,0) + y
1
(1,0)),

S2 and S1 compute h
∅
(2,0) := H1(∅, 1− y

0
(2,0) − y

1
(2,0)), S2 and S0 compute h

∅
(2,1) := H1(∅, y0

(2,1) − y
1
(2,1)).

iv. If k ̸= 1 : Servers compute proof that (VIDPF output on prefix p) = (VIDPF output on prefix p ∥ 0) + (VIDPF
output on prefix p ∥ 1):

S0 computes h
p
(0,1)

:= H1(p, y
p
(0,1)

− y
p∥0
(0,1)

− y
p∥1
(0,1)

) and h
p
(0,2)

:= H1(p,−(yp
(0,2)

− y
p∥0
(0,2)

− y
p∥1
(0,2)

))

S1 computes h
p
(1,2)

:= H1(p, y
p
(1,2)

− y
p∥0
(1,2)

− y
p∥1
(1,2)

) and h
p
(1,0)

:= H1(p,−(yp
(1,0)

− y
p∥0
(1,0)

− y
p∥1
(1,0)

))

S2 and S1 compute h
p
(2,0)

:= H1(p, y
p
(2,0)

− y
p∥0
(2,0)

− y
p∥1
(2,0)

)

S2 and S0 compute h
p
(2,1)

:= H1(p,−(yp
(2,1)

− y
p∥0
(2,1)

− y
p∥1
(2,1)

)).

Fig. 5: Private T -Heavy Hitters Protocol πHH (continues in Fig. 6).

12

2: Server Computation (Continued from Fig. 5)
– (Cont.) Repeat the following steps for length of k bits, where k ∈ [n]:

(b) (Cont.) VIDPF Evaluation.
v. S0 and S1 ensure that the client input is consistent across the three sessions by computing the following hashes.

S0 computes ĥp∥0 = H1(y
p∥0
(0,1)

− y
p∥0
(0,2)

, y
p∥0
(0,2)

− y
p∥0
(2,1)

) and ĥp∥1 = H1(y
p∥1
(0,1)

− y
p∥1
(0,2)

, y
p∥1
(0,2)

− y
p∥1
(2,1)

).

S1 computes hp∥0 := H1(y
p∥0
(2,0)

− y
p∥0
(1,0)

, y
p∥0
(1,2)

− y
p∥0
(2,0)

)) and hp∥1 := H1(y
p∥1
(2,0)

− y
p∥1
(1,0)

, y
p∥1
(1,2)

− y
p∥1
(2,0)

))

vi. Client State Accumulation: The servers accumulate their local state for each client session as follows:

S0 sets R
k
(0,1) := H2

(∣∣∣∣
p∈HHk

(
p, h

p
(0,1)

, π
p∥0
(0,1)

, π
p∥1
(0,1)

))
and R

k
(0,2) := H2

(∣∣∣∣
p∈HHk

(
p, h

p
(0,2)

, π
p∥0
(0,2)

, π
p∥1
(0,2)

))
S1 sets R

k
(1,2) := H2

(∣∣∣∣
p∈HHk

(
p, h

p
(1,2)

, π
p∥0
(1,2)

, π
p∥1
(1,2)

))
and R

k
(1,0) := H2

(∣∣∣∣
p∈HHk

(
p, h

p
(1,0)

, π
p∥0
(1,0)

, π
p∥1
(1,0)

))
S2,S1 set R

k
(2,0) := H2

(∣∣∣∣
p∈HHk

(
p, h

p
(2,0)

, π
p∥0
(2,0)

, π
p∥1
(2,0)

))
S2,S0 set R

k
(2,1) := H2

(∣∣∣∣
p∈HHk

(
p, h

p
(2,1)

, π
p∥0
(2,1)

, π
p∥1
(2,1)

))
(c) Batch-Verification. The servers batch-verify the client inputs for all three sessions and across the three sessions by

invoking πcheck (Fig. 8):

i. S0 sets ui :=
{
(Rk

(0,1), R
k
(0,2), R

k
(2,1), ĥ

p∥0, ĥp∥1) values for client i ∈ [ℓ]
}
. S1 sets vi :={

(Rk
(1,0), R

k
(2,0), R

k
(1,2), h

p∥0, hp∥1) values for client i ∈ [ℓ]
}
. S0 sets u := {ui}i∈[ℓ] and S1 sets v := {vi}i∈[ℓ].

S0 and S1 batch-verify all the client inputs by computing the bit ver and list L (comprising of invalid client inputs)
by running πcheck with inputs u and v respectively: (ver, L) := πcheck(u,v) :

ver := 0 if ∃ client whose (R
k
(0,1) ̸= R

k
(1,0))∨ (R

k
(0,2) ̸= R

k
(2,0))∨ (R

k
(2,1) ̸= R

k
(1,2))∨ (ĥp∥0 ̸= hp∥0)∨ (ĥp∥1 ̸= hp∥1),

and L := {list of invalid clients’ since they failed to pass the above check}. If ver = 1, then all the clients’ inputs
are valid.

ii. S2 possesses Rk
(2,0), R

k
(2,1) values for each client. S2 verifies that S2’s version of Rk

(2,1) matches with S0’s version

of Rk
(2,1). S2 also attests that S2’s version of Rk

(2,0) matches with S0’s version of Rk
(0,2) by computing (ver′, L′) as

follows:
(ver′, L′

) := πcheck({Rk
(2,1), R

k
(2,0)}ℓ clients of S2, {Rk

(2,1), R
k
(0,2)}ℓ clients of S0).

iii. S2 verifies that S2’s version of Rk
(2,0) matches with S1’s version of Rk

(2,0). S2 also attests that S2’s version of Rk
(2,1)

matches with S1’s version of Rk
(1,2) by computing (ver′′, L′′) as follows:

(ver′′, L′′
) := πcheck({Rk

(2,0), R
k
(2,1)}ℓ clients of S2, {Rk

(2,0), R
k
(1,2)}ℓ clients of S0).

After batch verification, the servers identify the list of bad clients as L := L ∪ L′ ∪ L′′. The servers ignore the inputs of all
clients in L.

(d) Aggregation. Aggregate the VIDPF outputs for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all validated
clients in [ℓ] \ L)

S0 sets cntγ
(0,1)

:= cntγ
(0,1)

+ y
γ
(0,1)

, cntγ
(0,2)

:= cntγ
(0,2)

+ y
γ
(0,2)

, and cntγ
(2,1)

:= cntγ
(2,1)

+ y
γ
(2,1)

S1 sets cntγ
(1,2)

:= cntγ
(1,2)

+ y
γ
(1,2)

, cntγ
(1,0)

:= cntγ
(1,0)

+ y
γ
(1,0)

, and cntγ
(2,0)

:= cntγ
(2,0)

+ y
γ
(2,0)

S2 sets cntγ
(2,0)

:= cntγ
(2,0)

+ y
γ
(2,0)

and cntγ
(2,1)

:= cntγ
(2,1)

+ y
γ
(2,1)

The servers have aggregated the VIDPF evaluations (over all the ℓ clients) for all candidate (k + 1)-bit strings.

(e) Pruning. Prune the non-heavy hitter strings. For every (k + 1)-bit string γ, the servers perform the following:
• The servers invoke FCMP functionality (Fig. 7) with the additive shares of the node frequency.

S0 invokes FCMP(cnt
γ
(0,1)

, 0, cntγ
(0,2)

, cntγ
(2,1)

, cntγ
(0,2)

, T), S1 invokes FCMP(cnt
γ
(1,0)

, cntγ
(1,2)

, 0, cntγ
(1,2)

, cntγ
(2,0)

, T),

S2 invokes FCMP(0, cnt
γ
(2,1)

, cntγ
(2,0)

, 0, 0, T)

The servers abort if FCMP aborts. If FCMP outputs 1 set HHk+1 := HHk+1 ∪ γ. Else, the servers ignore γ since it is
non-heavy hitter.

Servers have successfully computed the HHk+1 set. Servers repeat “Server Computation” steps (starting from Step 2b)
on k + 1 bit prefixes.

3: Output Phase. The servers output HH≤n as the set of T -heavy hitter strings.

Fig. 6: Private T -Heavy Hitters Protocol πHH (continuing from Fig. 5).

13

for each of the three sessions their additive shares of each frequency in their local cnt variables and uses
them for pruning.

(b) VIDPF Evaluation. Next, the servers retrieve from memory the states for VIDPF evaluation in all
three sessions corresponding to prefix p ∈ {0, 1}k for each client. These states are used to incrementally
evaluate the VIDPF on prefix strings γ ∈ {p ∥ 0, p ∥ 1} for every client in all three sessions. For each
client, the servers obtain new evaluation states (corresponding to prefix γ), VIDPF output for prefix
string γ, and proof strings. The states are stored in memory for future VIDPF evaluations on γ ∥ 0 and
γ ∥ 1 in the (k + 1)th level. More formally, the servers compute a secret shared vector yγ(b1,b2) and a hash

πγ
(b1,b2)

that is used for consistency checking by relying on the verifiability property of the VIDPF. Next,

the servers validate the client’s input. If k = 1, then the servers reconstruct y0 + y1 for each client to
verify that y0 + y1 = 1. If k ̸= 1, then the servers reconstruct yp − (yp∥0 + yp∥1) and verify that it is 0.
This ensures that the subtrees involving p ∥ 0 and p ∥ 1 are valid. The servers also need to ensure that
the client has provided a consistent input across the three sessions. This is ensured by computing the
difference of the reconstructed outputs across the sessions and verifying that they equal 0 by matching
their hash values with the other servers’ hash in Step 2b(v) of Fig. 5.

(c) Batch-Verification. The servers need to check: (1) that the hashes they possess for a client are equal,
and (2) that yp = (yp∥0 + yp∥1). Both these checks are reduced to checking the equality of a string
(corresponding to each client) held by servers. Let u (resp. v) be the list of ℓ (one for each client) strings
held by the first (resp. second) server. Then, the servers perform a batch verification of u and v strings
by invoking the subprotocol πcheck(u,v) in Fig. 8. If the two lists u and v are equal then πcheck returns
ver = 1, else it returns ver = 0 and a list L containing the indices of elements where the lists differ. This
is performed for all three sessions. S2 also attests the sessions that it is involved in. This is performed
using batch-verification, yielding output lists L′ and L′′. Finally, the servers identify the list of bad clients
as L = L ∪ L′ ∪ L′′ and their VIDPF output is ignored. The servers consider the rest of the clients as
“validated” and they are moved to the aggregation phase.

(d) Aggregation. Once a client’s VIDPF output yγ is validated for γ ∈ {p ∥ 0, p ∥ 1}, it is aggregated into
cntγ := cntγ + yγ . This is locally performed by each server (for all three sessions) using the secret shares
of yγ since it only involves addition. The servers perform this over every validated client output, and at
the end of this phase, the servers possess a secret share of the frequency of p ∥ 0 and p ∥ 1 as cntp∥0 and
cntp∥1.

(e) Pruning. The servers proceed to pruning and invoke FCMP (Fig. 7) on the secret shares of cntγ (for
γ ∈ {p ∥ 0, p ∥ 1}) for all sessions and threshold T . Based on the output of FCMP the following occurs:
– FCMP returns 1 if cntγ ≥ T (i.e., γ is a heavy-hitter string). In this case, the prefix γ is added to the

list of k + 1-bit heavy-hitter set (i.e., HHk+1 := HHk+1 ∪ γ).

– FCMP returns 0 if cntγ < T (i.e., γ is a non heavy-hitter string). In this case, the prefix γ is ignored.

– If FCMP returns ⊥, then one of the servers behaved maliciously and the honest servers abort. This
occurs if the malicious server has provided an incorrect threshold as input (condition 1 in FCMP) or
it provided incorrect client output shares as input (condition 4 in FCMP).

This computation is performed in parallel for all (k + 1)-bit prefixes in consideration, and after the
pruning phase, HHk+1 contains the list of (k + 1)-bit heavy hitter strings. Next, the above computation
is repeated for (k + 1)-bit strings to compute (k + 2)-bit heavy hitters, until we reach k = n − 1. As
already mentioned, FCMP is securely implemented using the state-of-the-art protocol of Rabbit [34].

Output Phase. At the end, the servers output HH≤n = {HH0, HH1, . . . ,HHn} as the set of T -heavy hitter
strings.

This completes the description of πHH (Figs. 5, 6). Security of our protocol is captured in Theorem 1 and
proven in Appendix C.

Theorem 1. Assuming VIDPF is a verifiable incremental DPF and H1,H2 are random oracles, FCMP is a
secure comparison functionality (Fig. 7), and H (in πcheck) is collision-resistant, then πHH (Figs. 5 and 6)
implements FHH in the (random oracle, FCMP)-model against malicious corruption of one server and ℓ′ ≤ ℓ
clients.

14

Functionality FCMP

Inputs: Party P0 has input (a0, b0, c0, d0, e0, T0), Party P1 has input (a1, b1, c1, d1, e1, T1), and Party P2 has input
(a2, b2, c2, d2, e2, T2).
Outputs: Compute a := a0 + a1, b := b1 + b2, c := c0 + c2, d := d0 + d1, e := e1 + e2, and proceed as follows:

1. If T0 ̸= T1 ̸= T2, then FCMP aborts. Else, set T := T0.
2. If a = b = c = d = e and a < T output 0.
3. If a = b = c = d = e and a ≥ T output 1.
4. Else, FCMP aborts (i.e. a, b, c, d or e strings are not equal).

Corruption: Adversary A maliciously corrupts one server. If A instructs the functionality to abort by sending ⊥, the functionality
instructs the honest servers to abort.

Fig. 7: The ideal FCMP functionality for comparison.

πcheck

Inputs: Party P0 has ℓ input strings u = {ui}i∈[ℓ]. Party P1 has ℓ input strings v = {vi}i∈[ℓ].

Outputs: πcheck outputs (ver, L) as follows:

– If u = v: ver := 1 and L := ∅,
– If u ̸= v: ver := 0 and L := {i}ui ̸=vi for i∈[ℓ].

ver = 1 (resp. ver = 0) denotes that the Merkle roots of u and v are equal (resp. unequal). List L is a list of indices where u and v
differ.

Parameters: H : {0, 1}κ → {0, 1}κ is a collision-resistant hash. K = ⌈log2 ℓ⌉ denotes number of levels in the Merkle tree for ℓ leaves.

Algorithm:
Root Computation: Party P0 (resp. P1) locally computes the Merkle R0 (resp. R1) on u (resp. v). For b ∈ {0, 1}, party Pb performs:

– If b = 0: set NK
0 := {NK

0,i}i∈[ℓ] := {H(K, i, ui)}i∈ℓ as the list of leaf nodes in the Merkle tree containing u.

– If b = 1: set NK
1 := {NK

1,i}i∈[ℓ] := {H(K, i, vi)}i∈ℓ as the list of leaf nodes in the Merkle tree containing v.

– Initialize ℓ′ := ℓ as the number of nodes in level K.
– For level k ∈ {K− 1,K− 2, . . . , 1} :

• Set ℓ′ := ⌈ ℓ′2 ⌉ as the number of nodes in level k.

• For i ∈ [ℓ′] : Compute list of nodes at level k by hashing the nodes at level k + 1 as Nk
b := Nk

b ∪ H(k,Nk+1
b,2i ,N

k+1
b,2i+1).

– Set Merkle Rb := N1
b .

Root Verification: Parties P0 and P1 exchange R0 and R1. If R0 = R1 then set ver := 1, L := ∅, and parties output (ver, L). Else, set
ver := 0 and continue the computation.

Unequal Leaf Identification: For b ∈ {0, 1}, party Pb sets N
1
b := Rb as the unequal node at level 1.

– For level k ∈ {2, . . . ,K}: For each unequal node n ∈ N
k−1
b at level k − 1, parties identify unequal nodes at level k:

• Party Pb fetches left and right child of n as childLb and childRb respectively, for b ∈ {0, 1}.
• Parties exchange childL0, child

L
1, child

R
0 and childR1, and performs the following for b ∈ {0, 1}:

N
k
b := N

k
b ∪ childLb if childL0 ̸= childL1

N
k
b := N

k
b ∪ childRb if childR0 ̸= childR1

Pb possesses N
K
b as list of unequal leaf nodes. Pb sets L as the list of indices of N

K
b w.r.t. initial leaf nodes NK

b as

L := L ∪ {i : NK
b,i = NK

b,i}.
Party Pb outputs (ver, L).

Fig. 8: Equality verification of ℓ strings between two parties and identification of unequal strings.

15

5 Batched Consistency Check

We now present our batched consistency check πcheck that enables two parties, P0 and P1, to verify the
equality of lists u and v containing ℓ strings using Merkle trees. If the two lists are equal then πcheck returns
ver = 1, else it returns ver = 0 and a list L containing the indices of elements where the lists differ. Correctness
follows from the collision resistance property of the hash function H.

As summarized in Fig. 8, πcheck requires K+ 1 rounds of communication, where K = ⌈log2 ℓ⌉. The total
communicated hashes are roughly 4ℓ′(log2

ℓ
ℓ′ + 2), where u and v differ on ℓ′ elements. It can be further

optimized to 2ℓ′(log2
ℓ
ℓ′ + 2), where only one of the parties sends its hashes instead of both. We provide a

detailed analysis of the protocol in Appendix D.

6 Experimental Evaluations

We implement the PLASMA heavy-hitters protocol πHH in Rust and use the tarpc framework by Google for
asynchronous Remote Procedure Calls (RPC). PLASMA is fully parallelized: all sessions in each server run in
parallel and we employ parallel iterators to process multiple client requests concurrently. (We apply the same
parallelization for benchmarking Poplar.) We instantiate the PRG for VIDPF using the AES-NI hardware
instructions for AES encryption with a seed of κ = 128 bits. The group size for intermediate levels is 262,
whereas for the leaves we use a finite field of 2κ = 256 bits. Notably, PLASMA can be implemented with
rings instead of fields since our checks rely on the security of the VIDPF. On the other hand, the security of
Poplar relies on the group size and needs 62 bits for the statistical failure probability to be 2−60.

Experiment Details. Our experiments vary the number of clients between ℓ = 103 and ℓ = 106 with two
different bit-string sizes, n = 64 and n = 256 bits. We configured the threshold T to be 1% of the clients’
strings, and we report the client and server costs, while empirically comparing with Poplar. Then, we compute
the total monetary costs (due to runtime and communication) incurred by PLASMA servers, and we compare
it with [4] (since the code of [4] is not open-source) based on the monetary cost.

Experimental Setup. We performed both LAN and WAN3 experiments on AWS EC2 machines (c5.9xlarge)
each with 36 vCPUs at 3.60 GHz. PLASMA is compiled using Rust 1.61, and client-side experiments are
carried out using a standard laptop with an Intel i7-8650U CPU (1.90 GHz).

Performance Evaluation. In our experiments, our goal is to answer the following questions:

– How efficient is PLASMA for each client and server?
– How does PLASMA compare with similar works (such as Poplar) that leverage DPFs?
– How does PLASMA compare with the related works that provide similar security guarantees, such as [4]?

Client costs. The PLASMA client generates three pairs of DPF keys. Meanwhile, the Poplar client generates
two pairs of DPF keys but also computes a malicious sketching operation. As a result, both PLASMA and
Poplar clients are extremely fast, running in the order of 20− 24 microseconds on 256-bit inputs. A detailed
comparison of client runtime can be found in Fig. 9 (a).

In terms of client communication, PLASMA transmits eight DPF keys, whereas Poplar transmits four
DPF keys plus the correlated randomness for the sketching operation. We observed that the clients in both
protocols incur the same communication overhead, roughly around 55 KB for 256 bits. Detailed comparisons
can be found in Fig. 9 (b).

Server costs. In this experiment, we run PLASMA with randomly distributed malicious clients and compare
it with Poplar. The number of malicious clients ℓ′ for PLASMA is 0%, 1%, and 10% of the total clients ℓ.

Server Runtime over LAN. PLASMA outperforms Poplar in terms of server runtime by 1.1× (64 bits)
and 2.1× (256 bits) for ℓ = 106 clients and T = 1% of the clients. Notably, this improvement in PLASMA is
largely attributed to our efficient VIDPF-based client input validation and remains mostly unaffected even in
the presence of malicious clients, as presented in Fig. 10. Meanwhile, Poplar servers validate clients’ inputs
using an expensive malicious secure sketching protocol.

3 We used one server in Oregon, one in Ohio, and one in N. Virginia. For Poplar, we used one in Oregon and the
other one in N. Virginia.

16

32 64 128 256 512
Bit-string size (n)

0 μs.
8 μs.

16 μs.
24 μs.
32 μs.
40 μs.
48 μs.

Cl
ie

nt
 R

un
tim

e
(μ

s.) PLASMA
Poplar

(a) Client Runtime

32 64 128 256 512
Bit-string size (n)

0 KB
20 KB
40 KB
60 KB
80 KB

100 KB
120 KB

Cl
ie

nt
 C

om
. (

KB
) PLASMA

Poplar

(b) Client Communication

Fig. 9: Comparisons of client costs for PLASMA and Poplar (KB is Kilobytes and µs is microseconds).

103 104 105 106

Number of clients (ℓ)

0

100

200

300

Ru
nt

im
e

(s
ec

.) PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.01ℓ
PLASMA ℓ 0 = 0.1ℓ
Poplar

(a) Bit-string size (n = 64)

103 104 105 106

Number of clients (ℓ)

0

500

1000

1500

2000

Ru
nt

im
e

(s
ec

.) PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.01ℓ
PLASMA ℓ 0 = 0.1ℓ
Poplar

(b) Bit-string size (n = 256)

Fig. 10: Server runtime (over LAN) for an increasing number of clients.

Server Runtime over WAN. We benchmarked PLASMA and Poplar over WAN for n = 64 bits and we
report our findings in Fig. 11. While the total latency is increased for both frameworks, we observe that the
server WAN runtime for PLASMA increased by roughly 10% compared to server LAN runtime, whereas
for Poplar the runtime increases by roughly 50%. We observe a 2.1× improvement in terms of server WAN
runtime for PLASMA compared to Poplar since PLASMA incurs significantly less communication for T = 1%.

103 104 105 106

Number of clients (ℓ)

0

200

400

600

Ru
nt

im
e

(s
ec

.) PLASMA ℓ 0 = 0 (WAN)
PLASMA ℓ 0 = 0.01ℓ (WAN)
PLASMA ℓ 0 = 0.1ℓ (WAN)
Poplar (WAN)

Fig. 11: Server runtime (over WAN) for an increasing number of clients (Bit string size n=64 bits).

Server-to-Server Communication. We compare the total communication costs incurred by all servers
for an increasing number of clients, T = 1%, and n = 256 bit strings in Fig. 12. Poplar servers incur 35
GB of communication, whereas, PLASMA servers communicate less than 1 GB of data when considering
ℓ′ = 0%, 1%, and 10% maliciously corrupt clients, hence yielding a 35× improvement over Poplar. The
implementation of [4] is not open-source so we estimate the communication cost of [4] in Appendix G. The
protocol of [4] communicates 45 GB of data to compute heavy-hitters over 106 client submitted 256-bit inputs.
This yields a 45× improvement of PLASMA over [4].

Server Monetary Cost. To obtain a fair comparison between Poplar, [4], and PLASMA, we perform
cumulative monetary cost analysis for a varying number of clients, assuming $0.05/GB and $1.53/hour. To
estimate the monetary cost, we run PLASMA and Poplar in a similar setup as [4] and compare it with the

17

103 104 105 106

Number of clients (ℓ)

0

5

10

15

20

To
ta

l C
om

. (
GB

) PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.01ℓ
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(a) Bit-string size n = 64

103 104 105 106

Number of clients (ℓ)

0

10

20

30

40

50

To
ta

l C
om

. (
GB

) PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.01ℓ
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(b) Bit-string size n = 256

Fig. 12: Comparisons with Poplar [10] and the sorting-based approach of [4] in terms of total server-to-server
communication (in GB).

runtime provided in [4]. Note that Poplar runs two servers while PLASMA runs three. The monetary cost,
due to runtime, incurred by Poplar (resp. PLASMA) is two (resp. three) times the cost, due to runtime,
incurred by a single Poplar (resp. PLASMA) server. After incorporating the monetary costs due to server
communication, we present our findings in Fig. 13 for T = 1% of the clients. Notably, for computing the T
most popular strings among 1 million clients with n = 256 bit strings, Poplar costs $4.7, while PLASMA
costs $1.78-$1.82 for 0%-10% malicious clients, yielding a 2.5× improvement over Poplar. Meanwhile, [4] costs
at least $2.24 to perform the same task, so PLASMA yields a 1.2× improvement over [4] despite PLASMA
having a 15× runtime slowdown. This is largely due to the communication incurred by [4] for performing
secure sorting under MPC. When considering input strings of smaller size, like n = 64, PLASMA is 3.5×
cheaper than Poplar and 1.4× cheaper than [4].

105 2 × 105 4 × 105 106

Number of clients (ℓ)

0.0

0.5

1.0

1.5

Co
st

 (U
SD

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.01ℓ
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(a) Bit-string size n = 64

105 2 × 105 4 × 105 106

Number of clients (ℓ)

0

1

2

3

4

5

Co
st

 (U
SD

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.01ℓ
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(b) Bit-string size n = 256

Fig. 13: Comparisons with Poplar and the sorting-based approach of [4] in terms of total monetary cost (in
USD).

Applications. We discuss two realistic applications:

Popular URLs. Each URL is represented as a 256-bit string and 10000 most popular URLs are computed
among 1 million client-submitted URLs, assuming T = 1%. Server runtimes of PLASMA and Poplar are
reported in Fig. 10 (d) and the client communication costs in Figs. 9 (a) and (b) for n = 256. This benchmark
is completed in under 22 minutes with less than 1 GB of data of communication for PLASMA, while Poplar
servers incur 1.5× additional runtime costs and communicate 35 GB.

Popular GPS coordinates. We employ plus codes [33] to efficiently encode the client GPS coordinates
using 64 bits. This approach uses a grid system aligned on top of the world map, assigning specific codes
to each area. Areas with similar codes are located in proximity to each other and a code that is a prefix

18

of another encompasses the area of the latter. For instance, code 87 represents the North East US region,
while code 87G8 represents a part of New York City. PLASMA uses plus codes to compute the most popular
locations (submitted by more than T = 1% of the clients) among a set of client-provided inputs using 64-bit
strings in roughly 4 minutes for 106 clients, as shown in Fig. 10 (b). Client cost is shown in Figs. 9 (a) and
(b) for n = 64.

7 Further Extensions

We discuss two interesting extensions of PLASMA and compare them with the state-of-the-art protocol of [4]:

Fairness: The notion of fairness ensures that if an adversary receives an output then the honest parties
also receive the correct output. If the adversary aborts then the honest parties also abort. In our case, we
observe that the count is secret shared between the servers and based on the output of FCMP in the pruning
phase, the servers compute the heavy-hitting prefix set. As a result, PLASMA is fair if the pruning phase is
fair. This happens if FCMP functionality is implemented using a three-party subprotocol [15] that guarantees
fairness against one malicious party. Hence, PLASMA can satisfy a stronger notion of security as compared
to Poplar or [4], which only satisfies security with selective abort.

Heavy-Hitters over Multiple Thresholds: PLASMA enables computing heavy-hitters over multiple thresholds
(T1, T2, . . .) based on some pre-agreed strings by the servers. This enables new applications like traffic avoidance,
since different roads may have different traffic densities (e.g., highways are busier than smaller suburban
roads). The servers consider that during evaluation and use higher values of T for highways with more vehicles
and lower values for smaller roads. Conversely, it is unclear how to extend [4] to support this feature. Protocol
details are in Appendix E.

8 Concluding Remarks

In this work, we presented PLASMA: a framework to privately identify the most popular strings – or heavy
hitters – among a set of client inputs without revealing the client data points. Previous works for private
heavy hitters, such as Poplar, consider security against malicious clients and were prone to additive attacks
by a malicious server, compromising the correctness of the protocol. To address this challenge, PLASMA
introduces a novel hash-based primitive, called verifiable incremental distributed point functions, which allows
the servers to validate client inputs using inexpensive operations. Additionally, we introduce a new batched
consistency check that uses Merkle trees to validate multiple client sessions in a batch. This drastically
reduces the concrete server-to-server communication, incurred during the heavy-hitters computation.

We implemented PLASMA using Rust and we compared it with state-of-the-art protocols like Poplar [10]
and the sorting-based approach of [4]. In our experimental setup, we observe that PLASMA runs 2.1× faster
than Poplar and incurs 35× and 45× less server communication than Poplar and [4], respectively. In the
same conditions, PLASMA is 1.2− 1.4× cheaper than [4] and 2.5− 3.5× cheaper than Poplar respectively,
corresponding to different input sizes.

References

1. Abdelrahaman Aly, K Cong, D Cozzo, M Keller, E Orsini, D Rotaru, O Scherer, P Scholl, N Smart, T Tanguy,
et al. Scale–mamba v1. 12: Documentation, 2021.

2. Erik Anderson, Melissa Chase, F. Betul Durak, Esha Ghosh, Kim Laine, and Chenkai Weng. Aggregate
measurement via oblivious shuffling. Cryptology ePrint Archive, Report 2021/1490, 2021. https://eprint.iacr.
org/2021/1490.

3. Apple and Google. Exposure Notification Privacy-preserving Analytics (ENPA) white paper, 2021.

19

https://eprint.iacr.org/2021/1490
https://eprint.iacr.org/2021/1490

4. Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas, Katsumi Takahashi, and
Junichi Tomida. Efficient secure three-party sorting with applications to data analysis and heavy hitters. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and
Communications Security, pages 125–138, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

5. Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta. Practical locally private heavy hitters.
Advances in Neural Information Processing Systems, 30:1–32, 2017.

6. James Bell, Adrià Gascón, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana Raykova, and Phillipp
Schoppmann. Distributed, private, sparse histograms in the two-server model. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and Communications Security,
pages 307–321, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

7. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving computations.
In Sushil Jajodia and Javier López, editors, ESORICS 2008: 13th European Symposium on Research in Computer
Security, volume 5283 of Lecture Notes in Computer Science, pages 192–206, Málaga, Spain, October 6–8, 2008.
Springer, Heidelberg, Germany.

8. Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differentially private heavy hitters. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and Communications
Security, pages 2361–2377, Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.

9. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs on secret-
shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages 67–97, Santa Barbara, CA,
USA, August 18–22, 2019. Springer, Heidelberg, Germany.

10. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight techniques for private
heavy hitters. In 2021 IEEE Symposium on Security and Privacy, pages 762–776, San Francisco, CA, USA,
May 24–27, 2021. IEEE Computer Society Press.

11. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Science, pages
337–367, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

12. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016:
23rd Conference on Computer and Communications Security, pages 1292–1303, Vienna, Austria, October 24–28,
2016. ACM Press.

13. Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–202,
January 2000.

14. Benjamin Case, Richa Jain, Alex Koshelev, Andy Leiserson, Daniel Masny, Ben Savage, Erik Taubeneck, Martin
Thomson, and Taiki Yamaguchi. Interoperable Private Attribution: A Distributed Attribution and Aggregation
Protocol. Cryptology ePrint Archive, Report 2023/437, 2023. https://eprint.iacr.org/2023/437.

15. Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. ASTRA: high throughput 3pc over rings
with application to secure prediction. In ACM SIGSAC CCSW@CCS 2019, pages 81–92, London, UK, 2019.
ACM.

16. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast
large-scale honest-majority MPC for malicious adversaries. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer Science, pages
34–64, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

17. Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate statistics. In
Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation, NSDI’17, page
259–282, USA, 2017. USENIX Association.

18. Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. Waldo: A Private Time-Series Database
from Function Secret Sharing. In 2022 IEEE Symposium on Security and Privacy, pages 2450–2468, San Francisco,
CA, USA, May 22–26, 2022. IEEE Computer Society Press.

19. Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schoppmann. Verifiable Distributed Aggregation
Functions. Proceedings on Privacy Enhancing Technologies, 2023(4):578–592, July 2023.

20. Leo de Castro and Antigoni Polychroniadou. Lightweight, maliciously secure verifiable function secret sharing. In
Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, Part I, volume
13275 of Lecture Notes in Computer Science, pages 150–179, Trondheim, Norway, May 30 – June 3, 2022. Springer,
Heidelberg, Germany.

21. Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,

20

https://eprint.iacr.org/2023/437

volume 4004 of Lecture Notes in Computer Science, pages 486–503, St. Petersburg, Russia, May 28 – June 1, 2006.
Springer, Heidelberg, Germany.

22. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume
3876 of Lecture Notes in Computer Science, pages 265–284, New York, NY, USA, March 4–7, 2006. Springer,
Heidelberg, Germany.

23. Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx: Private collection of traffic statistics for anonymous
communication networks. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference
on Computer and Communications Security, pages 1068–1079, Scottsdale, AZ, USA, November 3–7, 2014. ACM
Press.

24. Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggregatable privacy-preserving
ordinal response. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference on
Computer and Communications Security, pages 1054–1067, Scottsdale, AZ, USA, November 3–7, 2014. ACM
Press.

25. Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. Building a RAPPOR with the Unknown: Privacy-Preserving
Learning of Associations and Data Dictionaries. Proc. Priv. Enhancing Technol., 2016(3):41–61, 2016.

26. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party computation
for malicious adversaries and an honest majority. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer Science, pages
225–255, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

27. Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science,
pages 640–658, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

28. Justin Hsu, Sanjeev Khanna, and Aaron Roth. Distributed Private Heavy Hitters. In Proceedings of the 39th
International Colloquium Conference on Automata, Languages, and Programming - Volume Part I, ICALP’12,
page 461–472, Berlin, Heidelberg, 2012. Springer-Verlag.

29. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth, Mariana Raykova,
David Shanahan, and Moti Yung. On Deploying Secure Computing: Private Intersection-Sum-with-Cardinality.
In EuroS&P, pages 370–389, Genoa, Italy, 2020. IEEE.

30. Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal, and Somya Sangal.
Vogue: Faster computation of private heavy hitters. Cryptology ePrint Archive, Paper 2022/1561, 2022. https:
//eprint.iacr.org/2022/1561.

31. Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer and Communications
Security, pages 1575–1590, Virtual Event, USA, November 9–13, 2020. ACM Press.

32. Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. Private join and compute from PIR
with default. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
Part II, volume 13091 of Lecture Notes in Computer Science, pages 605–634, Singapore, December 6–10, 2021.
Springer, Heidelberg, Germany.

33. Google LLC. Open Location Code. https://github.com/google/open-location-code, 2019.
34. Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. Rabbit: Efficient Comparison for

Secure Multi-Party Computation. In Nikita Borisov and Claudia Diaz, editors, Financial Cryptography and Data
Security, pages 249–270, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

35. Moni Naor, Benny Pinkas, and Eyal Ronen. How to (not) share a password: Privacy preserving protocols for
finding heavy hitters with adversarial behavior. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer and Communications Security, pages
1369–1386, London, UK, November 11–15, 2019. ACM Press.

36. Antigoni Polychroniadou, Gilad Asharov, Benjamin E. Diamond, Tucker Balch, Hans Buehler, Richard Hua,
Suwen Gu, Greg Gimler, and Manuela Veloso. Prime Match: A Privacy-Preserving Inventory Matching System,
2023.

37. Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. Heavy hitter estimation over set-valued
data with local differential privacy. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communications Security,
pages 192–203, Vienna, Austria, October 24–28, 2016. ACM Press.

38. Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li. Federated Heavy Hitters Discovery
with Differential Privacy. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pages 3837–3847, Online, 26–28 Aug 2020. PMLR.

21

https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2022/1561

A Variants of Distributed Point Functions

Incremental and Verifiable DPF (IDPF and VDPF). The IDPF [10] and VDPF [20] build on standard
DPFs to secret share the weights of a tree w.r.t. a single non-zero path. IDPFs perform this task with linear
cost in the number of bits n for strings that share common prefixes [10], whereas using standard DPFs this
cost would grow to O(n2). IDPFs rely on expensive malicious secure sketching checks to ensure that an IDPF
key is not malformed. Meanwhile, the work of [20] considers efficient hashing-based verifiable properties to
ensure that a DPF (not IDPF) key is well-formed. Moreover, [20] enables a batched verification procedure
with communication proportional to the security parameter. However, VDPFs work only for DPF and not
IDPF. We present the VDPF algorithms below:

– VDPF.Gen(1κ, fα,β) → (key0, key1). Given the security parameter 1κ and a function f , output keys
key0, key1.

– VDPF.BatchEval(b, keyb,X) → (Yb, πb) : For b ∈ {0, 1}, batch verifiable evaluation takes a set X :=
{x1, x2, . . . , xm}, where each xi ∈ {0, 1}n. It outputs Yb := {yb,1, yb,2, . . . , yb,m}.

Correctness ensures that Y0 +Y1 = fα,β(X). Privacy ensures that an adversary in possession of one of the
keys (but not both) does not obtain any information about the function f . The verifiability property of
VDPF ensures that the proofs π0 and π1 are same iff they have been generated from valid keys key0 and key1
of a point function.

B Verifiable Incremental DPF

We present the verifiable incremental DPF construction, denoted as πVIDPF, in Figs. 14 and 15. Our VIDPF
construction is obtained by adding verifiability (steps 15-17 from Fig. 14) on top of the IDPF construction of
Poplar. The security of our protocol is summarized in Theorem 2.

Theorem 2. Assuming (PRG,PRG′,PRG′′) are pseudorandom generators, and (H1,H2) are random oracles
then πVIDPF = (Gen, EvalPref) in Figs. 14 and 15 is a VIDPF.

Proof. Input privacy of our VIDPF follows from the input privacy of the underlying IDPF protocol from
Poplar, which in turn relies on the pseudorandomness of PRG. Adding cs(i) in steps 16-17 does not affect

the input privacy of the client in the random oracle model since cs(i) = π̃
(i)
0 ⊕ π̃

(i)
1 is an XOR of two random

oracle outputs. Each server will know the preimage of either π̃
(i)
0 or the preimage of π̃

(i)
1 by evaluating the

given VIDPF key. The server breaks input privacy if it computes both preimages. However, to compute the

other preimage it needs to invert the random oracle on π̃
(i)
1−b′ (assuming it obtained the preimage of π̃

(i)
b′ by

evaluating the VIDPF key).
A malicious client breaks the verifiability property if there are two non-zero paths, say u and v in the

evaluation tree such that the client still passes the verification check performed by the servers on cs(i). This
means the servers obtain si0(u), s

i
1(u), s

i
0(v) and si1(v) from Step 11 of EvalNext (Fig. 15) by evaluating on u

and v such that the following holds:

si0(u) ̸= si1(u) and si0(v) ̸= si1(v)

cs(i) = π̃
(i)
0 (u)⊕ π̃

(i)
1 (u) = π̃

(i)
0 (v)⊕ π̃

(i)
1 (v),

where π̃
(i)
b (u) := H1(u, s

i
0(u)) and π̃

(i)
b (v) := H1(v, s

i
0(v)) for b ∈ {0, 1}. However, this is not possible in the

random oracle model since it breaks the XOR-collision-resistance property of the random oracle H1. The
adversary cannot find such a set of si0(u), s

i
1(u), s

i
0(v) and si1(v) values. Lemma 3 of [20] captures the formal

details. In addition, we also rely on the collision resistance property of H2 for arguing verifiability when
multiple proofs are iteratively hashed together in step 12 of the EvalNext algorithm. ⊓⊔

22

Notation: We denote the private n-bit string α and its bit decomposition as α1, . . . , αn ∈ {0, 1}n.
Primitives: PRG : {0, 1}κ → {0, 1}2κ+2 is a pseudorandom generator. H1 : {0, 1}∗ × {0, 1}κ → {0, 1}2κ and
H2 : {0, 1}2κ → {0, 1}2κ are random oracles.

Gen(1κ, 1n, α, (β1, β2, . . . βn),G): ▷ Generate DPF keys.

1: Sample s
(0)
b

R←− {0, 1}κ for b ∈ {0, 1} ▷ Secret seeds.

2: Let t
(0)
0 := 0 and t

(0)
1 := 1

3: for i := 1 to n do ▷ For each bit of α.

4: sLb ∥ t
L
b ∥ s

R
b ∥ t

R
b := PRG(s

(i−1)
b) for b ∈ {0, 1} ▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥ κ ∥ 1) bits.

5: if αi = 0 then Diff := L, Same := R ▷ Set right children to be equal.

6: else Diff := R, Same := L ▷ Set left children to be equal.

7: scw := sSame
0 ⊕ sSame

1

8: tLcw := tL0 ⊕ tL1 ⊕ αi ⊕ 1 ▷ Left control bits not equal if αi = 0.

9: tRcw := tR0 ⊕ tR1 ⊕ αi ▷ Right control bits not equal if αi = 1.

10: s̃
(i)
b

:= sDiff
b ⊕ t

(i−1)
b · scw for b ∈ {0, 1} ▷ Correction.

11: t
(i)
b

:= tDiff
b ⊕ t

(i−1)
b · tDiff

cw for b ∈ {0, 1} ▷ Correction.

12: s
(i)
b ∥W

(i)
b

:= Convert(s̃
(i)
b) for b ∈ {0, 1}

13: W (i)
cw := (−1)t

(i)
1 · [βi −W

(i)
0 + W

(i)
1] ▷ Output correction.

14: cw(i) := scw ∥ tLcw ∥ t
R
cw ∥W

(i)
cw ▷ Correction word for level i.

15: π̃
(i)
b = H1(α≤i ∥ s

(i)
b)

16: cs(i) = π̃
(i)
0 ⊕ π̃

(i)
1 .

17: keyb := (s
(0)
b ∥ cw(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n)) for b ∈ {0, 1} ▷ Key for party b.

18: return keyb for b ∈ {0, 1}

ConvertG(s):

1: Let u← |G|.
2: if u = 2m for an integer m then:

3: Return the group element represented by PRG′(s) mod u,

4: where PRG′ : {0, 1}κ → {0, 1}m.

5: else:

6: Let n = ⌈log2 u⌉+ κ.

7: Return the group element represented by PRG′′(s) mod u,

8: where PRG′ : {0, 1}κ → {0, 1}n.

Fig. 14: Protocol πVIDPF for Verifiable Incremental DPF (continues in Fig. 15).

23

EvalNext(b, i, st(i−1), cw(i), cs(i), x≤i, π): ▷ Evaluate xi.

1: Parse st(i−1) as (si−1 ∥ ti−1).

2: scw ∥ tLcw ∥ t
R
cw ∥W

(i)
cw := cwi ▷ Parse correction word.

3: s̃L ∥ t̃L ∥ s̃R ∥ t̃R := PRG(s(i−1)) ▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥ κ ∥ 1) bits.

4: τ(i) := (s̃L ∥ t̃L ∥ s̃R ∥ t̃R)⊕ (t(i−1) · [scw ∥ tLcw ∥ scw ∥ t
R
cw])

5: sL ∥ tL ∥ sR ∥ tR := τ(i) ▷ Parse τ(i).

6: if xi = 0 then s̃(i) := sL, t(i) := tL ▷ Keep left path.

7: else s̃(i) := sR, t(i) := tR ▷ Keep right path.

8: s(i) ∥W (i) := Convert(s̃(i)) ▷ New seed and output for level i.

9: st(i) := s(i) ∥ t(i) ▷ Save the state.

10: y(i) := (−1)b · [W (i) + t(i) ·Wcw] ▷ Compute output at level i.

11: π̃(i) = H1(x
≤i ∥ s(i)).

12: π = π ⊕ H2(π ⊕ (π̃(i) ⊕ t(i) · cs(i))).
13: return (st(i), y(i), π)

EvalPref(b, key, x ∈ {0, 1}n, st(d−1), d, π): ▷ Evaluate one public bitstring x on all it’s bits xi for i ∈ [n].

1: Parse key as s(0) ∥ cw(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n). ▷ Parse key for party b.

2: if (d ̸= 1) then parse st(d−1) as (s(d−1) ∥ t(d−1)),

3: else t(0) := b, st(0) := s(0) ∥ t(0).
4: for i := d to n do ▷ For each bit of x.

5: (st(i), y(i), π) := EvalNext(b, i, st(i−1), cwi, csi, x≤i, π).

6: return (st(n), y(n), π)

Fig. 15: Protocol πVIDPF for Verifiable Incremental DPF (continuing from Fig. 14).

C Proof of Heavy-Hitters Protocol πHH

C.1 Proof Sketch

Proof. The adversary is allowed to corrupt ℓ′ ≤ ℓ clients and one of the servers. The other two servers
are honest. We discuss the ways a malicious client can attempt to inject an error and we demonstrate our
consistency checks for them:

– Client VIDPF keys are malformed. A malicious client can attempt to provide malformed VIDPF keys
which are non-zero in more than one path in the binary tree (of 2n leaves). This gets detected in the
session involving the honest servers due to the verifiable property of the VIDPF at each level when the
servers verify the proofs generated during the VIDPF evaluation. If the checks pass, then it is ensured
that the VIDPF keys provided by the client are valid.

– Client VIDPF input is malformed. Next, a malicious client can try to double-vote on an input point, say

p ∥ 0 ∈ {0, 1}k+1 by constructing the VIDPF on (p ∥ 0, β̃k), i.e., f(p ∥ 0) = β̃k, where β̃k > 1, instead
of (p ∥ 0, 1). This is detected by the honest servers since they perform a local subtree verification by
reconstructing the value yp − (yp∥0 − yp∥1) and verifying that it equals 0 for all k > 0. For k = 0, the
servers verify that yϵ = 1. Combining all k checks ensures that yp∥0 = 1 if and only if yp = 1 and yp∥1 = 0,
else yp∥0 = 0.

– VIDPF input is inconsistent across sessions. Finally, a malicious client can try to provide different
VIDPF keys in different sessions. For example it constructs VIDPF keys for input (α1, 1) for the S0 − S1
session and (α2, 1) for the S1 − S2 session and (α3, 1) for the S2 − S0 session, where α1 ̸= α2 ̸= α3

and α1, α2, α3 ∈ {0, 1}k. The above two checks would still pass since they ensure client input validation
within each session but not client input consistency across the sessions. To ensure this, the servers match
the difference of the reconstructed output of S0 − S1 and S2 − S0 session, and the difference of the
reconstructed output of S2 − S0 and S1 − S2 session, to verify that they are all 0. By transitivity, it is
ensured that if and only if this check passes then the output of the VIDPF evaluation would be the same

across the three sessions, ensuring that α1 = α2 = α3. This is performed by computing the ĥp∥0 and ĥp∥1

hashes for every heavy-hitting prefix p computed by πHH.

24

A malicious server could collude with malicious clients. It can be observed that the honest clients’ inputs are
always hidden from the adversary due to input privacy of VIDPF, since no server possesses more than one
VIDPF key. Next, A malicious server could attempt to incorporate an erroneous VIDPF evaluation (from a
malformed client input key) or inject additive errors into the output. We show how this is tackled in the
protocol based on the server corruption:

– S0 is corrupt. In this case, the session between S1 − S2 is honest. S0 runs this session with S1 since it
obtained key(2,1) from the client. However, S2 behaves as an attestator by sending hashes of the messages
that S0 is supposed to send. This forces S0 to act honestly in the S1 −S2, otherwise, it leads to an abort.
Another way a malicious S0 can behave badly is by colluding with a malicious client. The client could
provide malformed inputs in S0 − S1/S2 − S0 session or inconsistent inputs across the three sessions. In

such a case, a malicious S0 could compute an incorrect hash ĥp∥0 := H1(y
p∥0
(0,1)

′
−y

p∥0
(0,2)

′
, y

p∥0
(0,2)

′
−y

p∥0
(2,1)) and

ĥp∥1 := H1(y
p∥1
(0,1)

′
−y

p∥1
(0,2)

′
, y

p∥1
(0,2)

′
−y

p∥1
(2,1)) where y

p∥0
(0,1)

′
, y

p∥0
(0,2)

′
, y

p∥1
(0,1)

′
, y

p∥1
(0,2)

′
are incorrect. This would allow

S0 to introduce an additive error into the frequency for p∥0 and p∥1 (for the S0−S1 and S2−S0 sessions)
by incorporating the client’s malformed input. However, this gets detected when the output count is
secretly reconstructed by the FCMP functionality for all three sessions and compared. The reconstructed
count won’t match and the ideal functionality would return a ⊥ message detecting that one of the servers
behaved maliciously, leading to an abort in the πHH.

– S1 is corrupt. This case is very similar to the above one where S0 was corrupt. In this case, the session
between S2−S0 is honest. S1 runs this session with S0 since it obtained key(2,0) from the client. However,
S2 behaves as an attestator by sending hashes of the messages that S1 is supposed to send. This forces S1
to act honestly in the S2 − S0, otherwise, it leads to an abort. Another way a malicious S1 can behave
badly is by colluding with a malicious client. The client could provide malformed inputs in S0−S1/S1−S2
session or inconsistent inputs across the three sessions. In such a case, a malicious S1 simply ignores

the hash values ĥp∥0 and ĥp∥1 sent by S0. This would allow the S1 to introduce an additive error into
the frequency for p ∥ 0 and p ∥ 1 (for the S0 − S1 and S1 − S2 sessions) by incorporating the client’s
malformed input. However, this gets detected when the output count is secretly reconstructed by the
FCMP functionality for all three sessions and compared. The reconstructed count won’t match and the
ideal functionality would return a ⊥ message detecting that one of the servers behaved maliciously, leading
to an abort in the πHH.

– S2 is corrupt. In this case, the session between S0 − S1 is honest. If S2 behaves as a malicious attestator
by sending incorrect hashes for the S1 − S2 or S2 − S0 sessions then the honest servers abort. Another
way a malicious S2 can behave badly is by colluding with a malicious client. The client could provide
malformed inputs in the three sessions. If the client provides malformed inputs in S0 − S1 session then
it gets detected due to verifiability of the VIDPF and the local subtree verification, since both S0 and
S1 are honest. It could provide malformed (allows double voting) VIDPF keys key′(2,0) and key′(2,1) to S1
and S0 for the sessions involving S2. However, that again gets detected since the server S0 computes the

hashes ĥp∥0 and ĥp∥1 honestly and the S1 verifies them honestly.
⊓⊔

C.2 Formal Proof Details of Theorem 1

Security of our protocol relies on the correctness of πcheck. πcheck is a protocol where two honest parties
commit to their inputs using Merkle-tree-based commitments and then they decommit based on whether the
root commitments match or not. Correctness of πcheck follows in a straightforward manner from the binding
property of the Merkle-tree commitment, which in turn follows from the collision-resistance property of the
hash function used in πcheck.

Next, we prove the security of our protocol in the real-ideal world paradigm of Canetti (Journal of
Cryptology ’00) [13]. Let A denote the real-world adversary corrupting one of the servers and ℓ′ clients
maliciously in the real-world execution of the protocol. Let realA,πHH

denote A’s view after participating in

25

the real-world execution. Let simulator Sim be the ideal-world adversary, which given access to the algorithm
of A and functionality FHH, produces the ideal world adversarial view as idealSim,FHH

.
We prove that our protocol πHH securely implements FHH functionality by providing an ideal world PPT

simulator Sim for all PPT adversaries A, and show that the real and ideal world view are indistinguishable, i.e.,

realA,πHH

c
≈ idealSim,FHH

. We use a sequence of hybrids (i.e., HYB0 - HYB4) to prove the indistinguishability
argument.

Proof. We first consider the case where A corrupts server S2 along with ℓ′ clients. Then, we consider the
case where A corrupts either S0 or S1 along with ℓ′ clients.
S2 is corrupt. We provide the formal simulator in Fig. 16 and argue indistinguishability as follows.

- HYB0 : The real world execution of the protocol.

- HYB1 : Same as HYB0, except Sim aborts if a malicious client i has provided inconsistent ui and vi inputs
to S0 and S1 and yet passed the batched consistency check πcheck. The two hybrids are indistinguishable
due to the correctness of πcheck.

- HYB2 : Same as HYB1, except the Sim extracts the corrupt client’s inputs using the three pairs of DPF
keys. Then Sim runs Step (iii) of simulated Batch-Verification, i.e., Sim aborts if 1) the client’s input αi

is k-bits heavy-hitting, 2) αi ∥ 0 or α1 ∥ 1 is invalid, and 3) client evaded the Batch-Verification check for
the sessions run between honest servers. The two hybrids are indistinguishable due to the verifiability
property of VIDPF in the random oracle model. This occurs when the client successfully evades the input
extraction process of VIDPF by providing malformed VIDPF keys and yet passes the batch verification
checks.

- HYB3 : Same as HYB2, except Sim invokes FHH with the extracted inputs to obtain the HH≤n set and
simulates FCMP based on whether a prefix γ is in HH≤n or not. The two hybrids are indistinguishable
against a corrupt server S2 in the FCMP-model.

- HYB4 : Same as HYB3, except Sim simulates the DPF key generation for the honest clients with input
(α, (β1, . . . , βn)) = (1, (1, . . . , 1)) and sets the counters to 0s in the aggregation step. Indistinguishable
due to VIDPF input privacy. The 0-valued counters in the aggregation step are identically distributed to
the actual aggregation counters since HYB3 and HYB4 are in the FCMP-model. This is the ideal world
execution of the protocol, completing our simulation algorithm.

Either S0 or S1 is corrupt. Next, we consider the case where either server S0 or S1 is corrupted along
with ℓ′ clients. We provide the simulator in Fig. 17 and argue indistinguishability as follows. (This case is
similar to the case where S1 is corrupted along with ℓ′ clients.)

- HYB0 : The real world execution of the protocol.

- HYB1 : Same as HYB0, except Sim aborts if a malicious client i has provided values (Rk
(2,0), R

k
(2,1)) to

S2 and values (Rk
(2,0), R

k
(1,2)) to S1 such that they are not equal, and yet client i passed the batched

consistency check πcheck. The two hybrids are indistinguishable due to the correctness of πcheck.

- HYB2 : Same as HYB1, except Sim extracts the corrupt client’s inputs following the extraction algorithm
using the pair of DPF keys. Then Sim runs Step (iv) of simulated Batch-Verification, i.e., Sim aborts
if 1) the client’s input αi is k-bits heavy-hitting, 2) αi ∥ 0 or α1 ∥ 1 is invalid, and 3) client evaded the
Batch-Verification check for the sessions run between honest servers. The two hybrids are indistinguishable
due to the verifiability property of VIDPF in the random oracle model. This occurs when a malicious
client successfully evades the input extraction process of VIDPF by providing malformed VIDPF keys
and yet passes the batch verification checks performed on the VIDPF proofs.

- HYB3 : Same as HYB2, except Sim invokes FHH with the extracted inputs to obtain HH≤n set and
simulates the FCMP functionality based on whether a prefix γ is in HH≤n or not. The two hybrids are
indistinguishable against a corrupt server S0 in the FCMP-model.

26

Simulator Sim for maliciously corrupt ℓ′ number of clients and server S2
– Corruption: Server S2 and ℓ′ number of clients are maliciously corrupt. The rest ℓ− ℓ′ clients and servers (S0,S1) are simulated

by simulator Sim.

– Primitive: VIDPF := (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are random oracles.

1: Client C Computation. (Repeated for ℓ clients)
(a) If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output values (1, . . . , 1).

(key(0,1), key(1,0)) := Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(1,2), key(2,1)) := Gen(1κ, 1n, 1, (1, . . . , 1),G),

(key(2,0), key(0,2)) := Gen(1κ, 1n, 1, (1, . . . , 1),G)

Sim sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2 on behalf of the
client.

(b) If the client is corrupt: Client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0))
to S2.

2: Server Computation. (Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S0 and S1)
– For each corrupt client i, the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt clients)

(a) Sim extracts the corrupt client’s input (α′
i, β

′
i,1, . . . , β

′
i,n) from the three pairs of DPF keys - key(0,1) and key(1,0), key(0,2)

and key(2,0), and key(2,1) and key(1,2), provided by client i. If the extracted values differ, then Sim takes the necessary
steps below.

(b) If the corrupt client has not provided a valid input at level j, i.e., 1) ∃j ∈ [n] s.t. β′
j ̸= 1 (for the smallest j), or 2) the

extracted inputs α′
i (from the three sessions) in the previous step differ in the jth bit, i.e., α′

i,j , then Sim truncates

the extracted input of client i to the first j bits of αi as αi := αi,≤j−1. Sim sets Lj−1
ext = Lj−1

ext ∪ {i, j − 1} and updates

Lext = Lext ∪ Lj−1
ext to denote that the ith client’s input is valid only till level j − 1.

(c) Sim stores the extracted input (after necessary truncation) αi for client i in a list Linp as Linp := Linp ∪ {i, αi}.
– After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain the output

set of T -heavy hitting prefixes as HH≤n. The functionality FHH waits for further instructions from the ideal world adversary
Sim.

– Repeat the following steps for length of k bits, where k ∈ [0, . . . , n− 1]:

(a) Initialization. For prefix p ∈ HHk, Sim initialize server S0’s and S1’s aggregation variables for prefixes γ ∈ {p ∥ 0, p ∥ 1}
as follows:

Simulated S0 sets cntγ
(0,1)

:= cntγ
(0,2)

:= cntγ
(2,1)

:= 0, Simulated S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0.

(b) VIDPF Evaluation. For prefix p ∈ HH≤k, Sim simulates S0 and S1 by running the original protocol steps. (Repeated
for ℓ clients)

(c) Batch-Verification.
i. Sim simulates S0 and S1 by computing u and v following the original steps of the protocol and Sim adds the ith

client to the list L of discarded clients if ui ̸= vi. If client i is not detected as bad by running the original protocol
steps of πcheck on u and v then Sim aborts.

ii. Sim runs the honest protocol steps to simulate the interaction between S2 − S0 and S2 − S1 to obtain the update
list L.

iii. Sim aborts if ∃ client i s.t. 1) its input is k-bits heavy-hitting (i.e., αi ∈ HHk), 2) αi ∥ 0 or αi ∥ 1 is not valid, i.e.,

{i, k} ∈ Lk
ext, 3) client i evaded the consistency check, i.e., i /∈ L.

If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes FHH to discard the parties from the output
computation of k + 1-bit heavy-hitting prefixes. Sim obtains an updated HH≤n set from FHH.

(d) Aggregation. Sim simulates this step for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all validated clients in
[ℓ] \ L)

Simulated S0 sets cntγ
(0,1)

:= cntγ
(0,2)

:= cntγ
(2,1)

:= 0, Simulated S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0.

(e) Pruning. For every (k + 1)-bit string γ, Sim simulates the pruning step as follows:

• If γ ∈ HHk+1 then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the servers, s.t.
γ is included in the list of heavy-hitting strings.

• If γ /∈ HHk+1 then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the servers, s.t.
γ gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, k + 1) and Sim aborts this simulated
execution.

Sim has successfully simulated the HHk+1 set. Sim repeats “Server Computation” steps (starting from Step 2b) on k + 1
bit prefixes.

3: Output Phase. Sim outputs HH≤n as the set of T -heavy hitter strings on behalf of simulated S0 and S1, and instructs FHH to
send output to the honest servers S0 and S1.

Fig. 16: Simulation Algorithm against malicious corruption of server S2 and ℓ′ clients.

27

Simulator Sim for maliciously corrupt ℓ′ number of clients and server S0
– Corruption: ℓ′ number of clients and server S0 are maliciously corrupt. The rest ℓ− ℓ′ clients and servers (S1,S2) are simulated

by simulator Sim. Without loss of generality, we will assume that S0 is corrupt; the case where S1 is corrupt is symmetric.

– Primitive: VIDPF := (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are random oracles.

1: Client C Computation. (Repeated for ℓ clients)
(a) If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output values (1, . . . , 1).

(key(0,1), key(1,0)) := Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(1,2), key(2,1)) := Gen(1κ, 1n, 1, (1, . . . , 1),G),

(key(2,0), key(0,2)) := Gen(1κ, 1n, 1, (1, . . . , 1),G)

Sim sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2 on behalf of the
client.

(b) If the client is corrupt: Client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0))
to S2.

2: Server Computation. (Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S1 and S2)
– For each corrupt client i, the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt clients)

(a) Sim extracts the corrupt client’s input (α′
i, β

′
i,1, . . . , β

′
i,n) from the pair of DPF keys - key(1,2) and key(2,1), provided by

client i.

(b) If the corrupt client has not provided a valid input at level j, i.e., ∃j ∈ [n] s.t. β′
j ≠ 1 (for the smallest j), then Sim

truncates the extracted input of client i to the first j bits of αi as αi := αi,≤j−1. Sim sets Lj−1
ext = Lj−1

ext ∪ {i, j − 1} and

updates Lext = Lext ∪ Lj−1
ext to denote that the ith client’s input is valid only till level j − 1.

(c) Sim stores the extracted input (after necessary truncation) αi for client i in a list Linp as Linp := Linp ∪ {i, αi}.
– After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain the output

set of T -heavy hitting prefixes as HH≤n. The functionality FHH waits for further instructions from the ideal world adversary
Sim.

– Repeat the following steps for length of k bits, where k ∈ [0, . . . , n− 1]:

(a) Initialization. For prefix p ∈ HHk, Sim initialize server S1’s and S2’s aggregation variables for prefixes γ ∈ {p ∥ 0, p ∥ 1}
as follows:

Simulated S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0, Simulated S2 sets cntγ
(2,0)

:= cntγ
(2,1)

:= 0.

(b) VIDPF Evaluation. For prefix p ∈ HH≤k, Sim simulates S1 and S2 by running the original protocol steps. (Repeated
for ℓ clients)

(c) Batch-Verification.
i. Sim simulates the interaction between corrupt server S0 and honest server S1 by following the protocol steps to

update list L.

ii. Sim simulates the interaction between corrupt server S0 and honest server S2 by following the protocol steps to
update list L.

iii. For each client i: Sim verifies that S2’s version of (Rk
(2,0), R

k
(2,1)) matches with S1’s version of (Rk

(2,0), R
k
(1,2)). If

they don’t match then Sim adds ith client to the list L of discarded clients. If client i is not detected as bad by
running the original protocol steps of πcheck between S1 and S2 then Sim aborts.

iv. Sim aborts if ∃ client i s.t. 1) its input is k-bits heavy-hitting (i.e., αi ∈ HHk), 2) αi ∥ 0 or αi ∥ 1 is not valid, i.e.,

{i, k} ∈ Lk
ext, 3) client i evaded the consistency check, i.e., i /∈ L.

If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes FHH to discard the parties from the output
computation of k + 1-bit heavy-hitting prefixes. Sim obtains an updated HH≤n set from FHH.

(d) Aggregation. Sim simulates this step for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all validated clients in
[ℓ] \ L)

Simulated S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0, Simulated S2 sets cntγ
(2,0)

:= cntγ
(2,1)

:= 0.

(e) Pruning. For every (k + 1)-bit string γ, Sim simulates the pruning step as follows:

• If γ ∈ HHk+1 then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the servers, s.t.
γ is included in the list of heavy-hitting strings.

• If γ /∈ HHk+1 then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the servers, s.t.
γ gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, k + 1) and Sim aborts this simulated
execution.

Sim has successfully simulated the HHk+1 set. Sim repeats “Server Computation” steps (starting from Step 2b) on k + 1
bit prefixes.

3: Output Phase. Sim outputs HH≤n as the set of T -heavy hitter strings on behalf of simulated S1 and S2, and instructs FHH to
send output to the honest servers S0 and S1.

Fig. 17: Simulation Algorithm against malicious corruption of server S0 and ℓ′ clients.

28

- HYB4 : Same as HYB3, except Sim simulates the DPF key generation for the honest clients with input
(α, (β1, . . . , βn)) = (1, (1, . . . , 1)) and sets the counters to 0s in the aggregation step. Indistinguishable
due to VIDPF input privacy. The 0-valued counters in the aggregation step are identically distributed to
the actual aggregation counters since HYB3 and HYB4 are in the FCMP-model. This is the ideal world
execution of the protocol, completing our simulation algorithm.

⊓⊔

D Analysis of Batched Consistency check

We recall the batched consistency check in Fig. 8. P0 and P1 hash their individual leaves and verify the
equality of their Merkle tree roots R0 and R1. If the roots are equal then all the leaves are equal. Otherwise,
the parties verify the equality of the left children and the right children of the root node. If the left (resp.
right) children are equal across the parties then the left (resp. right) subtrees are equal. If the left (resp. right)
children are different, then the parties apply the above algorithm to the left (resp. right) subtree. Proceeding

this way in an iterative manner down the tree, the parties identify the malformed leaves as N
K

0 and N
K

1 where
the two trees differ. Then they match them with their initial lists of input sets u and v to identify the indices
where they differ and then store those indices in L.

πcheck requires K+ 1 rounds of communication, where K = ⌈log2 ℓ⌉. Next, we demonstrate that if ℓ′ out of
ℓ leaves differ, then the total communication is O(ℓ′(log2 ℓ

ℓ′)) hashes. The Root Computation is local and
Root Verification communicates two hashes. During Leaf Identification, the parties communicate 4 hashes for
each unequal node. At the root layer, only the roots are different. At the next layer, both children can differ.
More generally, at layer k ∈ [K], there can be at most min(2k, ℓ′) unequal nodes. The total communicated
hashes are as follows:

2 + 4× (min(20, ℓ′) + . . .+min(2⌈log2 ℓ⌉, ℓ′))

= 2 + 4× (1 + 2 + . . . 2⌈log2 ℓ′⌉ + ℓ′ + ℓ′ + . . .+ ℓ′)

≤ 2 + 4× (2ℓ′ + ℓ′ × (⌈log2 ℓ⌉ − ⌈log2 ℓ′⌉))
≈ 8ℓ′ + 4ℓ′(log2 ℓ− log2 ℓ

′) = 4ℓ′(log2
ℓ
ℓ′ + 2).

We observe that the current version of πcheck communicates roughly 4ℓ′(log2
ℓ
ℓ′ + 2) hashes. This can be

further optimized to 2ℓ′(log2
ℓ
ℓ′ + 2) where only one server communicates at each level.

E Heavy Hitters with different Thresholds

Our protocol allows us to consider different heavy hitter thresholds Ti based on some pre-agreed strings
xi ∈ X by the servers. This can be beneficial for traffic avoidance since different roads may have different
traffic densities. For example, highways are busier than smaller suburban roads. The servers can take that
into consideration during evaluation, and use higher T s for highways (since there are more vehicles), and
lower thresholds for smaller roads.

We present our algorithm to compute heavy-hitters with different thresholds Ti for string xi ∈ X from
T -prefix oracle query in Fig. 18. The prefix oracle query with different thresholds can be computed using a
simple modification to protocol πHH, where the pruning at the leaf layer is performed based on the threshold
Ti for a given string xi ∈ X instead of a fixed threshold T .

F Compatibility with Differential Privacy

It is straightforward to complement PLASMA with ϵ-differential privacy techniques and ensure that the
presence or absence of a single client does not reveal anything about their data [22]. In this case, running two
instances of PLASMA, one with ℓ− 1 clients and another just by adding client C, should protect the private

29

Different Threshold Heavy Hitters from T -prefix count queries

Parameters: Threshold Ti ∈ N, for string xi ∈ X where |X| = m, and string length n ∈ N.
Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle Ωα1,...,αℓ

(p, t) for securely computing
t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

– Initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn are empty sets.

– Set T := min(T1, T2, . . . Tm).

– For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n− 2) :

• If Ωα1,...,αℓ
(p ∥ 0, T) = 1, HHk+1 := HHk+1 ∪ {p ∥ 0}.

• If Ωα1,...,αℓ
(p ∥ 1, T) = 1, HHk+1 := HHk+1 ∪ {p ∥ 1}.

– For each prefix p ∈ HHn−1, perform the following:
• If ∃xi ∈ X such that (p ∥ 0) = xi and Ωα1,...,αℓ

(p ∥ 0, Ti) = 1, then set HHn := HHn ∪ (p ∥ 0).
• If ∃xi ∈ X such that (p ∥ 1) = xi and Ωα1,...,αℓ

(p ∥ 1, Ti) = 1, then set HHn := HHn ∪ (p ∥ 1).
– Output T -heavy hitters HH≤n := {HH0,HH1, . . .HHn}.

Fig. 18: Algorithm for computing heavy hitters with different thresholds from T -prefix count queries.

data of the new client from anyone observing the outputs of the two protocols. Additionally, honest clients
should not be able to be identified when a malicious server attempts to ignore honest client data to infer
their inputs based on the protocol output. Therefore, PLASMA is directly compatible with the well-studied
techniques from [21, 23] and can adopt a similar approach as Poplar to bound the amount of information
that an adversary A can deduce from PLASMA’s output. Like Poplar, we need to ensure that the outputs of
these prefix-count oracle queries are differentially private, which can be achieved by introducing noise on the
oracle’s output with parameter 1/ϵ from a Laplace distribution.

G Communication Cost of [4]

We analyze the total server-to-server communication cost for the sorting-based protocol of [4] (considering
that its implementation is not open-source). We start from the optimized semi-honest communication cost
from Appendix A.3 of [4], shown below: mn(73 + 32

9 ||R||) + 3m||R||+ 2m||R′|| bits.
We ignore the R′ term since it is a payload. For malicious security, the protocol requires two times the

semi-honest protocol, and additionally, the ring needs to be a field of size 2κ size for 2−κ failure probability.
This leads us to the optimized malicious sorting protocol communication cost of: 2mn(73 + 32

9 κ) + 3mκ.
The heavy hitters protocol requires the following for each item out of the total m items:

– Compute two secure comparisons over n bits. Assuming the state-of-the-art secure comparison protocol
of Rabbit [34, Fig. 6], we get ≥ 4mn log n from LTBits and BitAdder as well as mn to open the values.

– One secure multiplication over two secret shared n-bit variables: For m values it would be at least mn
bits.

– Secure shuffling over and n-bit secret shared value, where the semi-honest shuffling takes 2m field element
communication.

For malicious security, we consider the compiler of Chida et al. [16] and the communication cost is 2× the
semi-honest cost: 2(4mn log n +mn + 2mn) = 8mn · log n + 6mn. The per-server communication cost for
their maliciously secure heavy-hitters protocol is at least:

2mn(
7

3
+

32

9
· κ) + 3mκ+ 8mn log n+ 6mn bits.

Setting the security parameter κ to 60 bits, the number of items m to 106, and the number of bits of each
item n to 256 bits we get that the communication cost should be at least:

2 · 106 · 256(7
3
+

32

9
60) + 3 · 106 · 60 + (8 · 106 · 256 · log 256 + 6 · 106 · 256) = 14.96 giga bytes

30

Therefore, the total server-server communication cost is at least 14.96 · 3 ≈ 45 gigabytes for computing the
heavy hitters over 256-bit keys between three servers for 106 clients.

31

	Introduction
	Our Contributions
	Related Work
	DPF-based
	Differential Privacy-based
	Sorting-based
	General MPC-based

	Preliminaries
	Threat Model
	Notation
	Distributed Point Functions (DPF)

	Technical Overview
	Histogram Protocol of Poplar
	Our Histogram Protocol
	Heavy-Hitters from T-Prefix Count
	T-Prefix Count Queries Oracle from VIDPF
	Verifiable Incremental DPF (VIDPF).
	Implementing T-Prefix Count Queries.

	Private Heavy Hitters
	Batched Consistency Check
	Experimental Evaluations
	Further Extensions
	Concluding Remarks
	Variants of Distributed Point Functions
	Verifiable Incremental DPF
	Proof of Heavy-Hitters Protocol ΠHH
	Proof Sketch
	Formal Proof Details of Theorem 1

	Analysis of Batched Consistency check
	Heavy Hitters with different Thresholds
	Compatibility with Differential Privacy
	Communication Cost of AHI+22

