
MPℓ◦C: Privacy-Preserving IP Verification using
Logic Locking and Secure Multiparty Computation

Dimitris Mouris†, Charles Gouert† and Nektarios Georgios Tsoutsos
{jimouris, cgouert, tsoutsos}@udel.edu

University of Delaware

Abstract—The global supply chain involves multiple indepen-
dent entities, and potential adversaries can exploit different
attack vectors to steal proprietary designs and information. As
a result, intellectual property (IP) owners and consumers have
reasons to keep their designs private. Without a trusted third
party, this mutual mistrust can lead to a deadlock where IP
owners are unwilling to disclose their IP core before a financial
agreement is reached, while consumers need assurance that the
proprietary design will meet their integration needs without
compromising the confidentiality of their test vectors. To address
this challenge, we introduce an efficient framework called MPℓ◦C
that resolves this deadlock by allowing owners and consumers
to jointly evaluate the target design with consumer-supplied
test vectors while preserving the privacy of both the IP core
and the inputs. MPℓ◦C is the first work that combines secure
multiparty computation (MPC) and logic-locking techniques
to accomplish these goals. Our approach supports both semi-
honest and malicious security models to allow users to balance
stronger security guarantees with performance. We compare our
approach to existing state-of-the-art works that utilize homomor-
phic encryption across several benchmarks and report runtime
improvements of more than two orders of magnitude.

Index Terms—Applied Cryptography, Hardware Security, In-
tellectual Property (IP) Verification, IP Piracy, Logic Locking,
Secure Multiparty Computation (MPC)

I. INTRODUCTION

In the modern integrated circuit (IC) design industry, System
on Chip (SoC) solutions have become increasingly popular
due to their ability to meet customer design requirements
while maintaining a low time-to-market timeline. As a result,
the number of IP core vendors and users has increased
significantly. To increase profit potential, hardware Intellectual
Property (IP) vendors make their IPs reusable by providing
design standards and guidelines for use in multiple design
layouts to drive sales, leading to a vast array of IP cores being
developed across the world.

Collaboration between IP vendors and users is crucial for
IP core verification, which is a critical aspect of System
on Chip (SoC) design. The IP consumers provide functional
requirements to IP vendors, who then design circuits that
meet these specifications [1]. The primary objective of IP
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core verification is to ensure that the IP core operates cor-
rectly and satisfies the required specifications. Formal logic
verification [2], simulation-based methods [3], and application-
specific instruction-set processors [4] are among the most com-
monly used solutions for IP core verification. While various
verification tools such as satisfiability (SAT) solvers [5] are
available, simulation methods remain the preferred method.

Unfortunately, trust issues between the parties can arise
during the verification process which creates a deadlock. IP
vendors are unwilling to disclose their IP until a consumer
purchases the netlist as the consumer could manufacture and
sell counterfeit devices. Similarly, consumers are hesitant to
purchase an IP unless they know it will work for their specific
use cases. In some cases, the inputs that consumers want
to employ to test the IP may be proprietary and they are
unwilling to share this information with IP vendors. For
instance, a healthcare provider may want to purchase an IP
to be used in hardware for health diagnostics and be sure
that the IP will function properly for real patient data, but is
unwilling to disclose these test vectors as medical information
is highly regulated [6]. Similarly, a company operating a
nuclear power plant may want to integrate a third-party IP
core into a control system that takes actions based on the
uranium enrichment levels. The company will be unwilling to
disclose real measurements related to the uranium enrichment
process, as this leaks information about the efficiency of the
plant. Even if this is not a concern, IP consumers may be wary
that the vendor will attempt to forge a correct result with their
provided inputs without running the inputs on the actual IP.

The globalized nature of the IP market has also led to an
ecosystem consisting of both trusted and untrusted IP owners
as well as legitimate and malicious users, making IP theft a
significant concern. With vendors prioritizing the functionality
of their IPs over security, IP theft is further exacerbated. As
a result, attacks against IPs, such as system-level analysis and
reverse engineering, have become very popular. Instead of
solely focusing on functionality and runtime performance, it
is crucial for the IC supply chain to address security concerns.

Interestingly, recent research has not only focused on tra-
ditional security measures but also on using cryptographic
techniques like homomorphic encryption (HE) [7], [8] and
zero-knowledge proofs (ZKP) [9]–[11] to enhance the security
of transactions in the globalized IC supply chain. For instance,
Konstantinou et al. [12] and Gouert et al. [13] securely
outsource the evaluation of public IP netlists to third parties to979-8-3503-4135-5/23/$31.00 ©2023 IEEE



ensure the confidentiality of the circuit inputs. However, these
solutions only protect the input test vectors as homomorphic
encryption fails to provide functional privacy; as a result, the
actual netlist remains visible to the party that evaluates it. On
the other hand, [14]–[16] preserve the privacy of the netlist
using ZKPs and focus both on functional verification and on
proving that IPs are free of hardware Trojans. Unfortunately,
both HE and ZKP-based solutions are very expensive and
impractical for realistic IP cores.

Inspired by recent cryptographic advancements and the ef-
forts for privacy-preserving IP core verification, we propose a
practical solution to address the trust issues between IP owners
and IP users during the IP core functional verification. Our so-
lution is based on logic locking, a methodology to protect IPs,
and secure multiparty computation (MPC), a cryptographic
technique that enables multiple parties to jointly compute a
function f without revealing their private inputs [17], [18]. In
more detail, logic locking protects the circuit by “encrypting”
the design using a key, which prevents unauthorized copying or
modification of the netlist by adversaries [19]. The encrypted
design can only be decrypted using the correct key, which
is typically kept secret by the IP owner. Logic locking adds
modest overhead in terms of area and latency as new logic
must be added to the circuit to enforce correct operation only
in the presence of the correct locking key. Our observation is
that IP users and IP owners can collaborate and evaluate an
IP core while keeping private both the IP (owned by the IP
vendor) and the proprietary test vectors (owned by the IP user).
Additionally, MPC encompasses a wide range of techniques to
ensure that a computation is performed correctly and securely.
This technology can be applied to solve a diverse range of
problems, from secure data analytics to voting and privacy-
preserving machine learning.

A. Our Contributions

In this paper, we adopt MPC and logic-locking techniques
to create MPℓ◦C: a framework that enables collaboration
between IP vendors and users for the private evaluation of
proprietary test vectors on intellectual property netlists. Our
core idea is to have the IP vendor lock the netlist of the IP and
then jointly evaluate the locked IP with the user, while keeping
both the key and the test vectors private. More specifically, the
function f that the two parties evaluate comprises the gates
of the locked IP, while the parties’ secret inputs are the logic
locking key in the case of the vendor and the test vectors in
the case of the IP consumer. After evaluation, both parties
compare the encrypted outputs with the expected outputs and
reveal the final pass/fail result.

In this work, we introduce a custom compiler from Verilog
netlists to “Bristol fashion” MPC circuits [20], which is a
serialized format that consists of one gate in each line and
guarantees that there are no inter-dependencies between the
gate inputs and the outputs from previous gates. Specifically,
our compiler ensures that the transformed netlist can be eval-
uated sequentially. Based on this transformation, our proposed
framework wields state-of-the-art semi-honest and maliciously

secure MPC protocols to evaluate the logic-locked circuit
with private inputs without the use of a trusted third party
(TTP). For our analysis, we conduct experiments with various
ISCAS’85 benchmarks [21] and compare MPℓ◦C against
existing solutions that use fully homomorphic encryption as
well as a strawman technique that involves integrating a TTP.

B. Related Works

Before delving into our framework, we first discuss several
recent works for protecting and verifying IP cores.

A recent research direction has focused on outsourcing
and evaluating IP designs with encrypted input vectors us-
ing homomorphic encryption (HE), which allows performing
operations on encrypted data [12]. The authors discuss both
a two-party and a three-party case: In the former, the IP
user encrypts their vectors and sends them to the IP vendor
for homomorphic evaluation. In the latter, the verification is
outsourced to a trusted third party that acquires knowledge of
the IP netlist. Similarly, the work of ROMEO [13] converts
Verilog netlists into homomorphic circuits and uses encrypted
inputs to evaluate them. However, these techniques only pro-
tect the privacy of the input test vectors, not the IP itself.
Additionally, due to the inherent computational overheads
of the underlying cryptographic technique (i.e., HE) these
methodologies still remain limited for real-world IP cores.
Contrary, as we show in our evaluations, MPℓ◦C protects both
the IP and the proprietary test vectors, while achieving scalable
evaluation of large IP cores.

A related line of work is based on zero-knowledge proofs
(ZKP) and allows IP vendors to prove to IP users various func-
tional and security properties about their IP without revealing
any details about it [15], [16]. Specifically, these methods
can verify that the IP satisfies particular functional properties,
meets certain constraints related to the area, performance, and
power consumption, as well as security properties (e.g., the IP
is free of rarely-activated hardware Trojans [22]). These results
are achieved by creating simulators that parse the circuit and
examine its behavior based on multiple public input-output test
vectors, which are supplied by the IP consumers. However, in
this case, the IP consumer has to disclose their test vectors,
which is against the objectives of this work. Lastly, similarly
to HE-based solutions, ZKP methodologies suffer from high
computational overheads.

Garbled circuits [17] enable secure computation between
two parties, so that each party does not reveal their inputs
to the other party; this is possible by allowing one party to
encrypt the circuit and the other party to securely evaluate
it. The original garbled circuit scheme can hide the gate
types and circuit topology and could be used in our scenario;
however, this approach would not be scalable due to high
communication overheads [6]. State-of-the-art garbled circuit-
based protocols [23] treat different gate types differently,
resulting in leakage of the circuit topology. Likewise, existing
solutions for private function evaluation can hide the gates
of the circuits [6], [24], [25], these works mostly focus on
theoretical advancements without concrete implementations.



Fig. 1. Strawman Approach. The IP vendor engages in secure computation with a trusted third party (TTP) and they jointly evaluate the IP on the proprietary
test vectors of the IP consumer. The test vectors remain private throughout the computation but the IP core is leaked to the TTP.

II. PRELIMINARIES

A. Secure Multiparty Computation (MPC)

MPC enables multiple entities to jointly perform a compu-
tation without disclosing any individual’s private inputs [17],
[18], [26]–[28]. There are many MPC protocols that consider
various threat assumptions about how the participants are
behaving, resulting in security/performance trade-offs. Most
practical protocols assume semi-honest adversaries, meaning
that they will follow the protocol specification, as opposed to
malicious adversaries. Another consideration is the number of
honest participants and how privacy and correctness can be
maintained when parties collude. MPC protocols that assume
the majority of the parties behave honestly (i.e., honest-
majority) typically utilize secret sharing as their basic primi-
tive [29], [30]. A (t, n)-secret sharing scheme allows splitting
a secret amongst n parties, so that t or more parties can
reconstruct the secret while having less than t shares does not
reveal anything about the secret. In this case, the parties first
represent a target function f as a Boolean or arithmetic circuit
and then each party shares its input with the other parties using
secret sharing. The parties can now jointly evaluate the circuit
gate by gate and finally reconstruct the shares on the output
wires, which represent the output of the function f that was
encoded as the circuit. On the other hand, assuming a dishonest
majority MPC is significantly more challenging and requires
specialized solutions such as garbled circuits [17], [31], GMW
oblivious transfer [27], cut-and-choose [32], SPDZ [33], MPC
in the head [34], and others [35].

Fig. 2. Logic Locking Example. This circuit illustrates a toy example of a
locked circuit with a 2-bit locking key using XOR as the key gate type.

B. Logic Locking

This method is one of the most popular ways to protect
netlists, as it ensures that the intended functionality of the
original circuit can only be derived with knowledge of a secret
logic locking key [19]. For example, this can be achieved
by introducing special key gates in the existing circuit that
take as input an internal wire and one bit of the logic locking
key, as shown in Figure 2 (XOR gates highlighted in green).
Typically these gates take the form of XOR/XNOR gates [36],
multiplexers [37], or lookup tables [38]. For every wrong bit of
the logic locking key, the value of an intermediate wire in the
circuit will be flipped, which can result in erroneous outputs.
When the correct logic locking key is loaded on the fabricated
chip, it is typically stored in tamper-evident memory to protect
against malicious attacks [39].

Unfortunately, many earlier logic locking techniques can
be broken using oracle-less machine learning attacks [40].
Conversely, provably secure logic locking techniques pro-
vide guaranteed security against an attacker with only black-
box access [41]. The state-of-the-art ALMOST framework
uses security-aware synthesis and ensures that locked designs
remain resilient post-synthesis [42]. Although logic-locking
techniques protect against overproduction, they typically solve
a different problem than the one in this work, as they do not
allow vendors to evaluate their IPs on proprietary test vectors
(e.g., inputs provided by users). Our goal is to protect both
the IP and the test vectors while enabling verification of the
IP on the proprietary input-output pairs.

C. Threat Model

To formalize our methodology, we now discuss the powers
of potential adversaries. MPℓ◦C operates in the two-party
computation setting with a dishonest majority, meaning that an
adversary can corrupt either the IP vendor or the IP consumer,
but not both. We assume two distinct threat models that
introduce a trade-off between security and performance.

1) Semi-honest Security Model: In this case, we assume
that the adversary passively corrupts one of the parties,
meaning the corrupt party will faithfully follow the protocol
specification but has incentives to eavesdrop the data.

2) Malicious Security Model: In the malicious security
model, we assume that the adversary can corrupt one of the



Fig. 3. MPℓ◦C Overview. The IP vendor first locks their IP and then engages in secure computation with the IP consumer. They jointly evaluate the locked
IP on their private data; the IP vendor inputs the logic locking key and the IP consumer inputs their proprietary test vectors. Both the logic locking key and
the test vectors remain secret throughout the whole computation.

parties actively, i.e., the corrupt party may arbitrarily deviate
from the protocol specification.

III. TECHNICAL OVERVIEW

In this work, we combine applied cryptography with hard-
ware security techniques to enable IP vendors and consumers
to jointly evaluate a netlist owned by the IP vendor with
proprietary test vectors owned by the consumer. More specif-
ically, we adopt logic locking to protect the netlist and secure
multiparty computation to jointly evaluate the IP between the
consumer and owner, as shown in Figure 3. Next, we offer a
technical overview of our MPℓ◦C methodology.

A. A Strawman Approach

One way to offer assurance to a consumer that an IP will
work for their use case is for the IP owner to share the netlist
with the consumer. However, this is only feasible for open-
hardware projects as the consumer can plausibly integrate the
IP without financial obligations. Alternatively, the consumer
can provide the owner with custom test vectors, but these
constitute IP on their own as they are often costly to develop
or cannot be shared due to the presence of sensitive data.

Both approaches can be strengthened with the use of a third
party that is trusted by both the consumer and the owner. In
this case, the IP owner will send the netlist to the trusted
third-party (TTP) and the consumer will also upload their test
vectors. Then, the TTP can directly evaluate the netlist on the
provided inputs and share the outputs with the consumer for
verification. However, if the third party is not trustworthy, a
key concern with this strawman approach involves potential
collusion; the third party can easily leak the test vectors to the
IP owner or the IP itself to the consumer.

With state-of-the-art cryptographic techniques such as se-
cure MPC, the previously outlined scenario can be further
strengthened. Now, the IP owner can share the netlist with
the TTP and the consumer generates secret shares of the test
vectors to distribute to both the TTP and the owner. The owner
and TTP jointly evaluate the IP and send the outputs back to
the owner for verification. In this setting, the TTP does not
learn the test vectors (unless they actively colludes with the
IP owner). This approach is depicted in Figure 1.

B. MPℓ◦C: Combining Logic Locking with MPC

MPℓ◦C eliminates the need for a TTP entirely while pre-
serving the confidentiality of both the owner’s IP core and
the consumer’s test vectors. In our proposed methodology, the
IP owner relies on provably-secure logic locking techniques to
secure their IP and then jointly evaluates the IP with the client
using zn MPC scheme. Both the logic locking key, which is
owned by the IP owner, as well as the consumer’s test vectors
are secret-shared with the other party.

In our concrete implementation, we employ the state-of-the-
art ALMOST logic locking framework [42], which outputs
synthesized Verilog using a 45-nanometer tech library.1 We
emphasize that MPℓ◦C can readily support any other logic
locking based methodology that uses standard logic gates as
the key gate mechanism. However, it can also extend to lookup
table-based methods [38] by exploiting the fact that all lookup
tables can be replaced with a subcircuit consisting solely of
standard logic cells. In this case, the logic synthesis tool can
perform the necessary conversions optimally with a synthesis
script. Our MPℓ◦C instantiation employs the Yosys logic
synthesis library, so this conversion can be done principally
with the abc -g AND, XOR command, which instructs the
underlying ABC toolchain to map all cells to standard 2-input
logic gates and inverters where possible.

Modern MPC implementations that support binary encod-
ings, such as MP-SPDZ [43], typically expect netlists to be
defined using Bristol-style circuits. This specification is well-
suited for privacy-preserving technologies such as MPC and
HE because all logic gates appear in an order that prevents
any unresolved dependencies. The preamble of a Bristol-style
circuit outlines the number of gates and wires in the circuit,
as well as the number of inputs and outputs along with the
sizes of each. Each proceeding line describes a single logic
gate, specifying the gate type (constrained to AND, XOR, and
INV), and wire IDs corresponding to the inputs and outputs.

To convert the synthesized Verilog format to Bristol-style,
we first use the Yosys synthesis tool [44] to perform a
few necessary transformations. Specifically, MPℓ◦C instructs
Yosys to map all cells to the 2-input XOR and AND gates and

1Our framework is universal and can work with any logic-locking technique.
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Fig. 4. Total server runtime for selected ISCAS-85 benchmarks. We locked
the circuits with provably secure logic locking, while for the homomorphic
encryption based solution (i.e., ROMEO) we used unlocked circuits (since the
sole computing party is the IP owner).

the single input INV gate in accordance with the supported
Bristol gate types. Then, Yosys writes the transformed circuit
as an EDIF netlist.

Next, we employ our parser to read the EDIF file and
perform a topological sort on the circuit (which is represented
as a directed acyclic graph). This is a necessary step as a
logic gate can not be evaluated until all input wires have been
resolved. Then, MPℓ◦C’s compiler traverses the sorted graph
and writes each node in the circuit to the output netlist. At
last, all net identifiers are converted to be compliant with the
Bristol-fashion specification, where the smallest IDs represent
input values, the largest IDs represent output wires, and the
remaining IDs represent intermediate wires in the circuit.

IV. EXPERIMENTAL RESULTS

We report a series of experiments for different logic-locked
circuits from the ISCAS’85 benchmark suite [21]. During
synthesis, we used the proc, flatten, synth, and abc
-g AND, XOR flags in Yosys [44] to generate circuits with
standard 2-input AND and XOR logic gates. For logic locking,
we utilized the provably secure logic locking ALMOST frame-
work [42] and acquire ALMOST-protected netlists. Table I
depicts the overhead in terms of the number of gates for
all ISCAS’85 circuits. For small circuits, we observe that
ALMOST results in a high overhead, adding over 4× more
logic gates to the circuit compared to the unlocked baseline.
However, for the larger ISCAS circuits, we observe compara-
tively lower overheads. Specifically, the locked c5315 circuit
is 19% larger than the unlocked version while the locked
c6288 and c7552 variants have approximately 40% more
logic gates. We note that the majority of the added logic
consists of XOR and NOT gates, which run very efficiently
with MPC due to optimizations such as free-XOR [45].

MPℓ◦C relies on the widely used MP-SPDZ [43] framework
that implements multiple MPC protocols. We used the default
security parameters of MP-SPDZ, namely, a computational
security parameter of 128 bits and a statistical security pa-
rameter of 40 bits. MPℓ◦C assumes the two-party dishonest
majority model, and we experiment with both semi-honest
and malicious adversaries. For malicious security, we use the
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Fig. 5. Total server communication in MB for selected ISCAS-85 bench-
marks. As mentioned, we locked the circuits with provably secure logic
locking, while for ROMEO we used unlocked circuits (since the sole computing
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implementation of the MASCOT protocol [46] of MP-SPDZ
that allows for secure computation of general arithmetic cir-
cuits. For semi-honest security, MP-SPDZ strips out all steps
required for malicious security from the MASCOT protocol,
resulting in a more efficient protocol. In our analysis, we report
both the runtime and the communication overheads for these
different security models. Finally, we compare with closely
related work in ROMEO [13]), which uses homomorphic
encryption to protect the test vectors and enable evaluation
by the IP owner (or a trusted cloud server). As with our
framework, ROMEO uses 128 bits of security and also utilizes
unlocked circuits as the IP consumer does not need to take
part in the circuit evaluation (and therefore does not need the
IP to be shared before purchase).

Experimental Setup. We evaluate our framework on two
AWS EC2 machines (c5.9xlarge) in the same region, each
with 36 vCPUs at 3.60 GHz, while for ROMEO, we used one
of these instances. Our compiler from EDIF to Bristol-style
format [20] is implemented in Python 3.2

TABLE I
CIRCUIT SIZES OF UNLOCKED VERSUS ALMOST-PROTECTED NETLISTS

USING A 128-BIT LOCKING KEY.

Circuit c1355 c1908 c2670 c3540 c5315 c6288 c7552

Unlocked 214 293 864 1386 2083 2423 1852
Locked 935 1003 1020 1770 2472 3390 2602

A. Runtime Experiments

First, we focus on the runtime of MPℓ◦C and compare it
with ROMEO in Figure 4 for the ISCAS’85 circuits. MPℓ◦C
runs in less than 0.2 seconds for both semi-honest and ma-
licious security for all circuits, achieving almost a constant
runtime. We observe that MPℓ◦C in the semi-honest threat
model is 4× faster than the malicious case, running all circuits
in less than 0.05 seconds. Contrary, ROMEO is two orders
of magnitude slower and scales linearly with the number of
gates of each circuit. For reference, it takes ROMEO 10.1 and

2https://github.com/TrustworthyComputing/mploc

https://github.com/TrustworthyComputing/mploc


45.2 seconds to evaluate c1355 and c7552, respectively.
Finally, as reported in [13], an AES circuit is evaluated in
approximately 13.5 minutes using ROMEO. Nevertheless, our
experimental server ROMEO requires 20.7 minutes for the AES
circuit, which is attributed to a slower processor and adopting
larger parameters for 128 bits of security (as opposed to 80 bits
in [13]). Conversely, MPℓ◦C evaluates AES with semi-honest
security in 0.67 seconds and with malicious security in 53.8
seconds, for a circuit comprising approximately 250 thousand
gates. This yields a 1849× improvement for the semi-honest
setting and a 23× for malicious.

As a baseline, we also evaluated the unlocked variants of
our ISCAS’85 circuits and observe that MPℓ◦C can evaluate
them in nearly identical runtime compared to their locked
equivalents. This can be mostly attributed to two factors: first,
the ALMOST framework does not cause a substantial increase
in the circuit size (especially for larger circuits). Second, the
underlying MPC library in MPℓ◦C is very efficient and a small
increase in the number of gates has a negligible impact on
runtime. Even in cases where the circuit becomes considerably
larger, the runtime impact remains minimal. For example, the
locked c1908 circuit requires an additional 2 milliseconds
while being nearly 4× larger.

B. Communication Experiments

Next, we evaluate MPℓ◦C and ROMEO in terms of commu-
nication overhead and show empirical results in Figure 5. Our
framework requires communication between the two parties
for evaluation, but for semi-honest security, this is minimal.
One of the advantages of using an FHE-based solution like
ROMEO is that the only communication between the IP
consumer and the IP owner is transmitting the encrypted test
vectors and getting back the encrypted results. However, we
note that FHE solutions also incur additional communication
overheads because public key material must be transmitted
to the IP owner to facilitate important HE operations. For
example, the key-switching operation used during most FHE
logic gate evaluations requires a large matrix (referred to as the
key-switching key); likewise, FHE noise reduction operations
require a bootstrapping key, which is composed of a bit-by-bit
encryption of the consumer’s secret key.

In total, such FHE public key material consists of approx-
imately 100 MB of data for ROMEO. We omit this from
Figure 5 as it is a one-time cost, albeit a substantial one.
Overall, we observe that both ROMEO and the semi-honest
MPℓ◦C incur less than 1.2 MBs of communication, while the
malicious MPℓ◦C incurs close to 23 MBs.

V. DISCUSSION

MPℓ◦C addresses important considerations related to trust
in the global IP supply chain, but the same methodology
can be generalized to other fields and address similar privacy
issues. Cloud computing is widely used in many industries as
it allows organizations to avoid maintaining costly computing
infrastructure and instead outsource data to third-party servers

that can perform proprietary computations over the inputs.
For instance, a cloud service may offer image classification
using a proprietary machine learning model and allow users
to have their own images classified for a fee [6]. Here, a
similar deadlock occurs that mimics those between an IP
owner and consumer: an end-user seeks assurances that a
cloud service will process their data, yet the cloud service
provider is unwilling to share their proprietary algorithms. At
the same time, the customer is unwilling to share their sensitive
data with the cloud. In this scenario, MPℓ◦C can be used to
jointly compute the cloud’s proprietary algorithm between the
cloud and a user, while ensuring the confidentiality of both
the algorithm itself and the user’s inputs. If the algorithm is
not expressed as a Boolean circuit, high-level synthesis can be
used to generate the Verilog input that MPℓ◦C expects.

While our evaluations employ strictly combinational cir-
cuits, we note that MPℓ◦C can readily extend to arbitrary
sequential circuit evaluations as well. While the Bristol speci-
fication does not inherently support sequential circuit elements
(such as flip-flops and latches) and has no notion of a clock,
sequential behavior can still be emulated with this format.
Specifically, unrolling techniques (such as those employed in
ROMEO [13]) can be adopted to evaluate the combinational
parts of the circuit for each clock cycle. For ROMEO, a
key limitation is that neither computing party can check
termination conditions (e.g., the status of a ready signal since
it is encrypted), so the circuit must be simulated cycle by cycle
for the maximum number of iterations required to successfully
generate the outputs. Conversely, our MPC techniques can
easily allow for intermediate results to be revealed to both
parties (such as a termination condition or a ready signal).
This would allow for greater efficiency relative to the FHE
approach as the sequential evaluation can terminate early if a
ready signal is asserted.

VI. CONCLUDING REMARKS

In this paper, we presented MPℓ◦C, the first work that
combines secure multiparty computation (MPC) and logic-
locking to allow IP vendors and consumers to jointly evaluate
an IP core with proprietary test vectors without revealing
either the IP or the test vectors to the other party. Our unique
observation is that we can use logic locking to protect a
target circuit that is evaluated by both parties and treat both
the logic locking key and the test vectors as private inputs
for MPC computation. This way, both the IP and the test
vectors are protected, enabling privacy-preserving evaluation
on proprietary inputs from different parties. Notably, MPℓ◦C is
flexible and agnostic to the underlying logic locking technique
or MPC library. For our evaluations, we employed state-
of-the-art logic locking and secure multiparty computation
methods to demonstrate the benefits of MPℓ◦C over several
combinational benchmarks from the ISCAS’85 suite. Overall,
MPℓ◦C offers high scalability and outperforms a state-of-the-
art solution based on homomorphic encryption by more than
two orders of magnitude.
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