
zk-Sherlock: Exposing
Hardware Trojans in Zero-Knowledge

Dimitris Mouris
ECE, University of Delaware

jimouris@udel.edu

Charles Gouert
ECE, University of Delaware

cgouert@udel.edu

Nektarios Georgios Tsoutsos
ECE, University of Delaware

tsoutsos@udel.edu

Abstract—As integrated circuit (IC) design and manufacturing
have become highly globalized, hardware security risks become
more prominent as malicious parties can exploit multiple stages
of the supply chain for profit. Two potential targets in this chain
are third-party intellectual property (3PIP) vendors and their
customers. Untrusted parties can insert hardware Trojans into
3PIP circuit designs that can both alter device functionalities
when triggered or create a side channel to leak sensitive infor-
mation such as cryptographic keys. To mitigate this risk, the
absence of Trojans in 3PIP designs should be verified before
integration, imposing a major challenge for vendors who have
to argue their IPs are safe to use, while also maintaining the
privacy of their designs before ownership is transferred. To
achieve this goal, in this work we employ modern cryptographic
protocols for zero-knowledge proofs and enable 3PIP vendors
prove an IP design is free of Trojan triggers without disclosing
the corresponding netlist. Our approach uses a specialized circuit
compiler that transforms arbitrary netlists into a zero-knowledge-
friendly format, and introduces a versatile Trojan detection
module that maintains the privacy of the actual netlist.

Index Terms—Circuit simulation, Hardware security, Hard-
ware Trojans, IP verification, Zero-knowledge proofs (ZKPs)

I. INTRODUCTION

Integrated Circuit (IC) designs are embedded in most elec-
tronic equipment, and as a result, IC security has become
of crucial importance as the globalized economy heavily
relies on System-on-Chip (SoC) designs. The IC supply chain
depends on procuring a variety of Intellectual Property (IP)
cores from third-party vendors (3PIP) and integrating them
with components that are designed in-house to fabricate the
IC [1]. However, the integrity of these externally developed IPs
cannot always be guaranteed, and as a result malicious actors
can potentially inject hardware Trojans to the SoC designs.
Such malicious modifications in hardware could be triggered
under certain conditions (e.g., user input, time-based, etc.)
or be always on [2]. Rarely-activated Trojans are typically
programmed to engage only under a unique set of circum-
stances created by an attacker and are hard to detect when
in their dormant state [3]. When activated, Trojans can alter
device functionality by influencing output wires or creating a
side channel through which sensitive data can be leaked. It is
critical for the IC supply chain to address security concerns,
such as hardware Trojans, instead of solely on functionality
and runtime performance.

IP core verification is a crucial step of SoC design [4],
during which IP consumers provide functional requirements

to the vendors, and the 3PIP vendors design circuits that
meet these specifications.1 The goal of IP core verification
is to convince system integrators about the functionality of
the generated 3PIP designs. Thus, ensuring that the circuit
is compliant with the specified constraints while achieving a
high degree of testability is a crucial consideration in the IC
supply chain. Most common solutions include formal logic
verification [5], simulation-based methods [6], and application-
specific instruction-set processors [7]. Previous solutions are
mostly geared toward IP functional verification, but fail to
protect the privacy of the IP designs. However, recent efforts
have also focused on using cryptographic protocols such as
homomorphic encryption and zero-knowledge proofs (ZKP)
to enhance the security of transactions in the IC supply chain.
[8], [9] securely outsource the evaluation of 3PIP netlists to
third parties to ensure the confidentiality of the circuit inputs,
however, the actual netlist is still visible since homomorphic
encryption does not provide functional privacy (only data pri-
vacy). [10], [11] preserve the privacy of the netlist using ZKPs
but only focus on functional verification and fail to address
the increasingly important issue of hardware Trojans. Indeed,
existing solutions offer no support for system integrators to
confirm that the IP they are purchasing does not contain any
malicious modifications, without inspecting it themselves.

There are two classes of defenses against hardware Trojans
that both require access of the IP, namely invasive and non-
invasive [1]. The former incurs significant costs as it requires
expensive equipment and renders the IP unusable afterwards;
the latter relies on functional and statistical IC testing, such
as path-delay measurements [12], and gate-level characteriza-
tion [13]. Such defenses require unrestricted access to the IP,
as well as the statistical distribution of gate characteristics.

In this work, we propose zk-Sherlock, a novel framework
for detecting hardware Trojans in zero-knowledge (ZK), i.e.,
without allowing access to the circuit. Our methodology in-
troduces a custom ZK-friendly algorithm for Trojan detection
that resolves the deadlock between 3PIP vendors and IP
customers. This deadlock is created by the mutual distrust
between vendors and consumers: vendors may withhold an
IP before receiving payment from customers to avoid the risk
of IP theft, while customers may refuse to purchase an IP until
they are convinced that it satisfies their requirements. A key

1We use the terms IP consumer and system integrator interchangeably.

1



contribution of zk-Sherlock is the translation of a netlist into
a ZK-friendly format that enables testing using public input
vectors to detect any gates with the least switching activity and
argue about the presence of potentially malicious logic. Our
main observation is that the majority of logic gates in a netlist
would switch for most input pairs. zk-Sherlock leverages
this observation to tally the total number of switched gates
across multiple evaluations with different inputs and detect the
ones that have not switched. We evaluate our approach using
multiple benchmarks from ISCAS ’85 and ’89 [14], [15] with
judiciously injected Trojans following the methodology of [16]
(as in the TRIT benchmarks on Trust-Hub [17]).

II. PRELIMINARIES

A. Background on Zero-Knowledge Proofs

A zero-knowledge proof (ZKP) is a cryptographic protocol
between a prover P and a verifier V in which the former can
prove to the latter that a statement is true without revealing
any additional information about that statement. Specifically,
the zero-knowledge property guarantees that if the statement
is true, a cheating V does not learn anything after interacting
with an honest P , other than the fact that the statement is
true. If V is honest and the statement is true, the ZKP must
be complete, so that V will always be convinced about the
statement by an honest P . Finally, a ZKP is sound if a
cheating P cannot convince an honest V to accept a statement,
except with negligible probability [18]. ZKPs enable multiple
real-world applications, from private crowdsourcing to private
blockchain transactions and anonymous auctions [19]–[21].

More formally, let us assume a public state machine SM
executing a procedure with a public input x and secret input
w (only known to P), which return a public output y such that
y = SM(x,w); here V knows everything but w. In a ZKP, P
runs the state machine SM locally while hiding the value of
w and provides cryptographic guarantees (i.e., the proof) to V
that all the state transitions were performed correctly. V can
then verify the proof and become convinced that P knows a
correct witness w. Some ZKP constructions rely on arithmetic
circuits, such as [22], while others rely on the random-access
machine (RAM) model (e.g., [23]). RAM protocols record the
execution trace of the machine as a sequence of intermediate
states, each comprising multiple blocks of registers. In the gen-
erated trace, all state transitions satisfy special cryptographic
constraints that are mathematically expressed as low-degree
polynomials over a finite field and should hold during the
entire execution of SM. Other constructions that use arithmetic
circuits require a trusted pre-processing phase that binds P
and V to a static arithmetic circuit for each different SM.
A significant advantage of the RAM-based protocols such as
“Scalable Transparent ARgument of Knowledge” [20], [24] is
that they are universal, i.e., they do not depend on a specific
state machine and can verify any state transition.

B. Threat Model

In this work, we assume threats originating at any point in
the IC supply chain, from the design phase to IP integration.

Cheating P: A cheating P (i.e., the IP vendor) has financial
incentives to deceive the IP consumer by falsely claiming that
they possess an IP with certain functional specifications while
the IP could be embedded with malicious circuitry at certain
locations. In one scenario, P may try to deceive an honest V
by trying to sell an IP with a Trojan that alters the agreed-upon
functionality. In another scenario, P has performed malicious
gate modifications to the IP while still meeting the agreed-
upon functionality. The system integrator (i.e., buyer) has to
test the IP with multiple input vectors, and also verify the
correctness of the ZKP. P succeeds if they can break the
soundness of the protocol with probability greater than 2−λ

(where λ is zk-Sherlock’s security parameter) by producing a
fake ZKP that will convince an honest V to accept it.
Cheating V: We assume a cheating V (i.e., an IP consumer)
that follows the protocol but also have incentives to extract
information about the private IP from an honest P . More
specifically, V may attempt to extract and learn the IP netlist
before paying, even though the vendor wants to keep that
netlist secret until payment is received. In other words, V
wants to break the zero-knowledge property of the protocol and
learn the private IP w, which is infeasible if P follows the pro-
tocol faithfully. Notably, V can only learn that SM(x,w) = y
(in our case SM checks if the IP w is Trojan-free).

III. ZERO-KNOWLEDGE TROJAN DETECTION

A. Overview of our Methodology

In this work, we present zk-Sherlock, a novel methodol-
ogy for privacy-preserving hardware Trojan detection. Our
approach enables 3PIP vendors to prove to system integrators
that: a) they possess an IP with some predefined functional
specifications, and b) the IP is Trojan-free without revealing
anything about its netlist. zk-Sherlock utilizes zero-knowledge
proofs to detect any hardware Trojan triggers by inspecting the
switching activity of every gate and identify any non-switching
logic without sharing the netlist with the IP consumer. To that
end, we have designed a specialized ZK state machine SM that
consumes a netlist as private input w and proves that the circuit
has not been embedded with malicious logic. More specifi-
cally, SM is a public circuit simulator that evaluates gates and
records their switching activity for different input/output pairs.
Most gates in a netlist will flip after relatively few input sets,
unless these gates trigger a rarely-activated Trojan. Thus, our
observation is that after evaluating a small number of possible
input pairs with zk-Sherlock, all gates should have switched
(with high probability), except for Trojan logic. zk-Sherlock
then offers provable guarantees on the computational integrity
of SM, i.e., that the circuit simulation was performed faithfully.
A high-level overview of zk-Sherlock is depicted in Fig. 1 and
discussed in the following paragraphs.

1) Privacy-Preserving Functional Verification: To solve the
mutual distrust between 3PIP vendors (P) and IP consumers
(V), zk-Sherlock first needs to prove that a secret IP adheres
to some predetermined specifications. As shown in Fig. 1(a),
the untrusted 3PIP vendor synthesizes an IP described in a

2



Fig. 1. Overview of zk-Sherlock: (a) P possesses an IP described in a Hardware Description Language that has some agreed-upon functional specifications.
(b) The 3PIP vendor (P) synthesizes the IP and generates a gate-level netlist, determining the correct evaluation order of the gates. (c) The 3PIP vendor
transforms the IP into a ZK-friendly encoding for the Trojan detection state-machine SM. (d) P executes SM using the netlist as private input and public test
vectors chosen by V . (e) The two parties interact and P convinces V that the IP is Trojan-free and that SM was evaluated correctly.

Hardware Description Language (HDL),2 creates a gate-level
netlist, and then uses the specialized compiler of zk-Sherlock
to transform it into a ZK-friendly encoding, as shown in
Fig. 1(c). More specifically, our compiler guarantees that
this encoding can be evaluated sequentially (i.e., one gate at
a time) and does not have any inter-dependencies between
the gate inputs and the outputs from previous gates, thus it
can be evaluated by zk-Sherlock’s ZK state machine. During
the third step (in Fig. 1(c)), we apply various optimization
techniques to minimize the total number of intermediate wires
by employing graph-coloring techniques. Next, P and V agree
on the functional simulation algorithm SM, shown in (d), and
the latter provides public input vectors x. Finally, the 3PIP
vendor runs SM locally to simulate the private netlist w with
inputs x and computes a public circuit output y, which is then
checked by V along with the cryptographic proof that every
step of SM was executed faithfully.

2) Privacy-Preserving Trojan Detection: After proving that
the IP adheres to some agreed-upon functional specifications,
zk-Sherlock needs to prove that the netlist does not contain
any Trojan trigger logic. As malicious parties aim to leak
sensitive information or induce errors by inserting Trojans in
circuits that are triggered under special conditions, the gates
that comprise the injected Trojan logic are nearly-unused and
are rarely activated on common inputs. Towards that end, we
have expanded the state machine SM to also analyze the gate-
switching activity (i.e., when the output signal of the gate
flips) of all the gates in the circuit across multiple inputs in
order to detect malicious triggers. An important contribution
of our work is that SM acts both as a circuit simulator (to test
the netlist functionality in ZK), and as gate switching activity
analyzer at the same time, combining functional verification
and Trojan detection. The circuit compiler of zk-Sherlock
translates netlist gates into a sequence of SM instructions that
track which gates have low switching activity over different
input pairs, and flags them as potentially malicious. Contrary
to existing hardware Trojan detection mechanisms, our ZKP
approach hides the IP netlist from the verifier.

Fig. 2 demonstrates how a hardware Trojan can affect the
functionality of a circuit under only a single input combina-

2Without loss of generality, zk-Sherlock uses Verilog.

tion. To clarify how this encoding is evaluated, we show a two-
dimensional table on the right-hand side of both (a) and (b)
that represent four SM registers (r0 – r3) and how the values
in these registers change after the evaluation of each gate. For
example, all registers are initialized with “1” and after the
evaluation of G1, its output “1” is written to r0 (underlined
in the table). In Fig. 2 (b), we observe that the trigger T of
the Trojan is only activated when all inputs are “1”, which
only happens in one out of 24 different input combinations,
rendering gate T the gate with the rarest switching activity.
However, we do not observe a similar behaviour for the
payload gate P , which switches for various inputs (e.g.,
1100). The intuition of zk-Sherlock is motivated from the
aforementioned observation, i.e., determine the gates with a
suspiciously low switching activity as they can potentially be
part of a Trojan trigger.

3) zk-Sherlock back-end: zk-Sherlock utilizes the Zilch
framework [20] as the cryptography back-end to argue about
the correctness of SM. Internally, zk-Sherlock leverages the
MIPS-like assembly programming language of Zilch to imple-
ment the state machine, which simulates the evaluation of a
circuit and computes all gate switching activity. At a technical
level, Zilch enforces different cryptographic constraints that
should hold during each SM transition and are used to prove
the correctness of the execution of SM in zero-knowledge.

The initial state of the zk-Sherlock state machine is filled
with multiple blocks, each with 64 1-bit registers initialized
to zero. With every gate evaluation, the SM modifies at
most one register and copies all the blocks into a new state.
The sequence of states forms a two-dimensional table that
represents the execution trace of the SM (Fig. 2). The type
and the index of the update on the SM state correspond to the
different operation that is performed in ZK. For instance, an
arithmetic operation (e.g., addition) will modify the state in a
different way than a bitwise operation (e.g., AND, OR).

Our state machine consumes private inputs that correspond
to the netlist description (known only to P) and public test
vector inputs that V provides. Utilizing the Zilch back-end,
zk-Sherlock cryptographically asserts that all state machine
transitions were performed in accordance to the operation
in the encoded netlist w; this is enforced using polynomial
constraints over the transitions that assert their satisfiability to

3



(a) Trojan-free circuit. (b) Circuit embedded with a Trojan.

Fig. 2. The gates are labeled by the evaluation order (first G1, then G2, etc.) and are also shown on the rows of the tables (execution trace). The underlined
values in the tables show which simulation variable was overwritten after the evaluation of the gate. The variables r0 – r3 represent four SM registers, also
shown at the outputs of the gates. (a) shows a circuit that outputs “1” when all four inputs are set to high (note: there exist more combinations to output “1”).
(b) shows the same circuit as (a) after being injected with an example Trojan that is only activated when all inputs are set to “1”.

V . Effectively, zk-Sherlock convinces the IP consumer that a
secret netlist has certain functional specifications and that it is
Trojan-free without revealing its composition.

B. Serialized Encoding for State Machine

To generate a proof, zk-Sherlock synthesizes HDL programs
into netlists consisting of Boolean gates and flip-flops. Our
approach utilizes the Yosys Open SYnthesis Suite for RTL
synthesis to generate Electronic Design Interchange Format
(EDIF) netlists based on Verilog files [25]. We optimize the
netlist during RTL synthesis with Yosys by converting the
entire circuit into standard two-input logic gates and removing
unused wires. Next, zk-Sherlock associates each logic gate
with specific input and output wires (as shown in Fig. 2) with
SM registers (e.g., r0 – r3). An important step for our compiler
is to identify gate dependencies by creating a directed acyclic
graph, running a topological sort to eliminate dependencies,
and finally assigning unique SM registers to the wires. For
instance, in order to evaluate the gate G3 in Fig. 2(a), gates
G1 and G2 have to be evaluated first. Notably, our compiler
applies an additional optimization to further reduce the total
number of registers used, as the state size (i.e., the total
number of registers in SM) can impact the execution time of
our ZK back-end. Finally, the zk-Sherlock compiler serializes
the circuit as a sequence of MIPS-like instructions for Zilch,
which is ultimately passed as the private input w to SM, which
evaluates the serialized netlist for a given test vector.

The approach depicted above is directly applicable to
combinational circuits, but sequential circuits need additional
considerations. Since sequential circuits require more than one
clock cycle to evaluate completely, we need multiple iterations
over a given netlist. Thus, we unroll the circuit for the desired
number of clock cycles and when a flip flop is encountered
during evaluation, we propagate its input signal to its output
signal at the next clock cycle. While this approach correctly
emulates sequential circuits, it is suboptimal when used with
our zk-Sherlock module. Often, certain combinational logic
segments do not change between clock cycles and do not need
to be re-evaluated every time. Therefore, we omit gates that
are not connected to an upstream flip-flop to account for this
and avoid redundant computations.

Without loss of generality, Fig. 3 shows the serialized en-
coding for an IP with 64 gates (we only show the first, second,
and last gate for simplicity) and how zk-Sherlock tracks the
gate switching activity (shown as “Switching Gates”) across
different iterations. Our encoding consists of: gate type (e.g.,
AND), unique gate identifier (depends on number of gates in
the IP), register block ID#, and offset inside the register block
for the two input wires and the output wire. The state encoding
is organized into multiple blocks (each block holds 64 bits),
and each bit represents one SM register. For instance, the first
line of the encoding reads the 10th and the 12th bits of the
first block as inputs and writes at the 13th bit of the first 64-bit
block. For simplicity, in Fig. 3 we only assume two register
blocks: the “Switching Gates” block tracks the gate identifiers
that have switched, while the “Gate Outputs” block stores the
gate outputs. At the end of the first cycle simulation, some
gates have switched and this is reflected in the bottom left
block, along with gate outputs in this cycle (bottom right). As
more cycles are evaluated, the “Switching Gates” blocks will
continue to reflect the number of gates that have encountered
a state change. After a specified number of iterations, the
presence of a zero in this block suggests a potential Trojan
trigger. The total number of iterations is decided by V , so that
more iterations offer increased assurance against Trojans.

C. State Machine Evaluation

1) Output generation: We simulate the circuit as follows:
First, zk-Sherlock reads a Boolean gate from w and performs
the corresponding Boolean operation on the two input wires

Fig. 3. Abstraction of two cycles of an 64-gate circuit in zk-Sherlock.
“Switching Gates” block and “Gate Outputs” block keep track of the switched
gates and the gate outputs, respectively.

4



Fig. 4. Experimental timings for P and V per input-pair for selected
benchmarks.

to compute the correct output. All gates with no dependencies
(i.e., first layer gates) get inputs directly from the public input
x, while all intermediate and output gates read their inputs
from the outputs of preceding gates which are encoded in
different registers in the SM. Our compiler guarantees that the
input and output SM registers map to the correct gates. This
way, SM can keep track of the identifiers of the specific gates
that have switched. Internally, we use multiple register blocks
(depicted in Fig. 3 as “Switching Gates”), where each register
corresponds to the switching activity of a particular gate.

2) Computational Integrity: To prevent a malicious P
from deceiving an honest V by switching the IP under test
across different executions, zk-Sherlock applies a secure hash
function to compute two secure digests: one for the IP netlist
itself and one for the state registers. Then, at the beginning
of each new cycle, P initializes the SM registers with the
previous execution state and computes the secure hash of the
new registers to prove that she propagated the state from
the previous cycle. P evaluates the circuit again, keeping
track which gates switched during the current and all previous
executions. At the same time, P recomputes the hash of the
private IP and proves to V that the same w was used across
all the executions. Notably, V does not learn any intermediate
results about the gate switching activity as the intermediate
registers are stored at the beginning of w.

IV. EXPERIMENTAL RESULTS

We evaluate our methodology using selected benchmarks
from the ISCAS’85 and ISCAS’89 suites [14], [15]. During
synthesis, we used the proc, flatten, synth, and abc
-g simple flags in Yosys to generate circuits with standard
2-input logic gates. Moreover, our zk-Sherlock compiler is
implemented in Python 3, while the state machine simulator
is implemented in a MIPS-like assembly language for ZKPs.
As the back-end of zk-Sherlock can benefit from multiple
threads to accelerate the proving time, we used an m5.24xlarge
AWS EC2 instance featuring two Intel Xeon Platinum 8175M
processors at 2.5 GHz.

In a realistic scenario, zk-Sherlock uses multiple input test-
vectors chosen by V , which correspond to the functional
properties the IP consumer wants to assert. The input vector
values do not impact the proving time, but affect how the gates
switch. Because V has no knowledge of the underlying circuit,
the best method for choosing input vectors is to generate them
randomly. As shown in our experiments, random test vectors
cause all the gates in a circuit to flip relatively quickly with
high probability when a Trojan is not present.

Fig. 5. Percentage of the total gates that switched over increasing number of
input pairs for selected Trojan-free benchmarks.

Fig. 4 shows the amortized execution time for both the
prover and verifier for a set of inputs. In the case of sequential
circuits (from the ISCAS’89), the presented time reflects the
cost per cycle. In practice, multiple input vectors should be
utilized at the discretion of V to minimize the risk of false
positives (where one or more non-malicious gates have yet
to switch across all input sets provided). The timings for P
scale linearly with the number of logic gates per circuit and
the execution time for V scales logarithmically with increasing
circuit sizes. In addition, the size of the execution trace scales
with the number of SM registers required to simulate the
circuit, which can impact the execution time. Generally, the
wider the circuit, the more register blocks are required; for
instance, c17 requires 5 intermediate wires at its widest point,
which can fit into a single 64-bit packed block, while c880
requires 87 registers that fit into two 64-bit blocks. Notably,
the proving times for all circuits are independent of the input
pattern, as an identical set of gates is visited for each run.

The verifier needs to choose enough test vectors to avoid
false positives. While each circuit’s gate switching activity will
vary, in Fig. 5 we investigate the percentage of possible input
pairs required to flip all non-malicious gates in an assortment
of eight circuits with random input wire sets. We found that 32
input sets were sufficient to flip all gates, and hence result in
no false positives, in all eight Trojan-free circuits, while all but
one circuit had flipped earlier. However, random inputs assume
that V has no knowledge about the behavior of the circuit,
whereas practically, the prospective buyer of an IP is aware of
the expected functionality. Thus, V can cleverly choose pairs
to cover a large number of cases in a small number of input
pairs; for instance, in a simple example with a 2-bit less-than-
or-equal circuit, V can choose two sets of inputs that will
cause all of the gates to switch. If a Trojan is hidden in such
a circuit, our approach can detect it with just 2 input pairs.

To further assess our approach, we injected Trojans in
c17, c432, c499, s27, and s298 ISCAS circuits following
the methodology of TRIT [16].3 We carefully modified the
benchmarks so that the Trojans get triggered with only a
rare combination of the input wires and alter specific output
wires, similarly to Fig. 2. zk-Sherlock successfully detected the
Trojans in all cases; interestingly, we note that c499, the largest
combinational circuit tested, yielded the lowest probability of
false negatives for a given number of inputs, as there are 41
input wires and hence 241 possible inputs and only 32 inputs
were required to flip all benign wires. Therefore, since the

3Precompiled TRIT benchmarks from Trust-Hub [17] are incompatible with
Yosys so we created equivalent benchmarks based on their ISCAS circuits.

5



Trojan can only trigger on a very rare input combination,
the chance of the Trojan flipping during the tested input sets
is approximately zero. For smaller circuits, such as c17 and
s27, there are far fewer possible input pairs (32 and 128
respectively), so the probability of false negative increases to
approximately 6% for c17 and 1.5% for s27 as each require
2 input pairs to successfully flip all benign wires.

V. RELATED WORK

zk-Sherlock focuses on hardware Trojans that are activated
based on particular user inputs and thus the trigger nodes are
rarely executed. The authors of [26] use an advised genetic
algorithm to generate test vectors to detect Trojans based on
rare nodes. Similarly, FANCI [27] performs functional analysis
to flag logic that is unlikely to affect the circuit outputs,
whereas VeriTrust [28] identifies potential Trojan wires by
examining verification corner cases. All of these techniques
assume that the circuit design is available for inspection
and that details such as the statistical distribution of gate
characteristics are known. A critical benefit of zk-Sherlock
is that it proves to the IP consumer that a netlist is Trojan-free
without revealing anything about it.

Pythia [10], [11] describes an approach related to
zk-Sherlock by introducing the problem of functional IP
verification in zero-knowledge. However, these works focus
on ensuring that the IP has some functional properties and that
it also satisfies constraints related to area, performance, and
power consumption by checking different input-output pairs
provided by IP consumers. Orthogonal to these earlier works,
our approach transforms the problem of IP verification to a
zero-knowledge protocol, and introduces a powerful encoding
and a versatile SM that allows tracking the switching activity
to offer assurance about hardware Trojan triggers.

VI. CONCLUDING REMARKS

In this paper, we have proposed a unique methodology for
detecting hardware Trojans in zero-knowledge (i.e., without
having access to the IP netlist). zk-Sherlock proposes a new
encoding that enables evaluating both the circuit and com-
puting the gate switching activity at the same time. Using
this gate activity, our methodology identifies the nodes that
are triggered under rare conditions, and thus flags them as
potentially malicious logic. In effect, zk-Sherlock enables 3PIP
vendors to convince system integrators that a netlist is Trojan-
free, so that integrator have only black-box access to the IP by
submitting test vectors. Additionally, as the system integrator
may provide inputs, zk-Sherlock employs a secure hashing to
confirm that across different executions: (a) the same secret
netlist was used, and (b) the gate-switching activity counters
were propagated correctly. Our experiments with ISCAS’85
and ’89 benchmarks demonstrate that our approach converges
quickly to “Suspected Trojan” or “Trojan-free” classification
for an IP under test.

ACKNOWLEDGMENT

This work was supported by the University of Delaware
Research Foundation under Grant 21A01012.

REFERENCES

[1] M. Rostami et al., “Hardware security: Threat models and metrics,” in
ICCAD. IEEE/ACM, 2013, pp. 819–823.

[2] R. Karri et al., “Trustworthy hardware: Identifying and classifying
hardware Trojans,” IEEE Computer, vol. 43, no. 10, pp. 39–46, 2010.

[3] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, pp. 10–25, 2010.

[4] A. Deshpande, “Verification of IP-Core based SoC’s,” in ISQED. IEEE,
2008, pp. 433–436.

[5] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in VTS. IEEE, 2012,
pp. 252–257.

[6] G. Moretti et al., “Your Core – My Problem? Integration and Verification
of IP,” in DAC. IEEE/ACM, 2001, pp. 170–171.

[7] M. Stadler et al., “Functional verification of intellectual properties (IP):
a simulation-based solution for an application-specific instruction-set
processor,” in IEEE ITC, 1999, pp. 414–420.

[8] C. Konstantinou, A. Keliris, and M. Maniatakos, “Privacy-preserving
functional IP verification utilizing fully homomorphic encryption,” in
DATE. EDAA, 2015, pp. 333–338.

[9] C. Gouert and N. G. Tsoutsos, “ROMEO: Conversion and Evaluation of
HDL Designs in the Encrypted Domain,” in DAC. ACM/EDAC/IEEE,
2020, pp. 1–6.

[10] D. Mouris and N. G. Tsoutsos, “Pythia: Intellectual Property Verification
in Zero-Knowledge,” in DAC. ACM/EDAC/IEEE, 2020, pp. 1–6.

[11] D. Mouris, C. Gouert, and N. G. Tsoutsos, “Privacy-preserving IP
Verification,” IEEE TCAD, 2021.

[12] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint,” in IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST). IEEE, 2008, pp. 51–57.

[13] Y. Alkabani and F. Koushanfar, “Consistency-based characterization for
ic trojan detection,” in 2009 ICCAD, 2009, pp. 123–127.

[14] F. Brglez, “A neural netlist of 10 combinational benchmark circuits,”
IEEE ISCAS: Special Session on ATPG and Fault Simulation, pp. 151–
158, 1985.

[15] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in ISCAS. IEEE, 1989, pp. 1929–1934.

[16] J. Cruz et al., “An automated configurable trojan insertion framework
for dynamic trust benchmarks,” in DATE, 2018, pp. 1598–1603.

[17] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in ICCD. IEEE, 2013,
pp. 471–474.

[18] M. Bellare and O. Goldreich, “On Defining Proofs of Knowledge,” in
CRYPTO. Springer, 1992, pp. 390–420.

[19] A. Kosba et al., “Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts,” in Symp. on Security and Privacy
(SP). IEEE, 2016, pp. 839–858.

[20] D. Mouris and N. G. Tsoutsos, “Zilch: A framework for deploying
transparent zero-knowledge proofs,” IEEE TIFS, vol. 16, pp. 3269–3284,
2021.

[21] ——, “Masquerade: Verifiable Multi-Party Aggregation with Se-
cure Multiplicative Commitments,” Cryptology ePrint Archive, Report
2021/1370, 2021.

[22] B. Parno et al., “Pinocchio: Nearly practical verifiable computation,” in
Symp. on Security and Privacy (SP). IEEE, 2013, pp. 238–252.

[23] E. Ben-Sasson et al., “SNARKs for C: Verifying program executions
succinctly and in zero knowledge,” in CRYPTO. Springer, 2013, pp.
90–108.

[24] ——, “Scalable zero knowledge with no trusted setup,” in CRYPTO.
Springer, 2019, pp. 701–732.

[25] C. Wolf, J. Glaser, and J. Kepler, “Yosys - A Free Verilog Synthesis
Suite,” in Austrochip, 2013.

[26] M. Nourian, M. Fazeli, and D. Hély, “Hardware trojan detection using
an advised genetic algorithm based logic testing,” JETTA, vol. 34, no. 4,
pp. 461–470, 2018.

[27] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: identification
of stealthy malicious logic using boolean functional analysis,” in CCS.
ACM, 2013, pp. 697–708.

[28] J. Zhang et al., “VeriTrust: Verification for Hardware Trust,” IEEE
TCAD, vol. 34, no. 7, pp. 1148–1161, 2015.

6


	Introduction
	Preliminaries
	Background on Zero-Knowledge Proofs
	Threat Model

	Zero-Knowledge Trojan Detection
	Overview of our Methodology
	Privacy-Preserving Functional Verification
	Privacy-Preserving Trojan Detection
	zk-Sherlock back-end

	Serialized Encoding for State Machine
	State Machine Evaluation
	Output generation
	Computational Integrity


	Experimental Results
	Related Work
	Concluding Remarks
	References

