
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Privacy-Preserving IP Verification
Dimitris Mouris , Graduate Student Member, IEEE, Charles Gouert , Graduate Student Member, IEEE,

and Nektarios Georgios Tsoutsos , Member, IEEE

Abstract—The rapid growth of the globalized integrated circuit
(IC) supply chain has drawn the attention of numerous mali-
cious actors that try to exploit it for profit. One of the most
prominent targets of such parties is the third-party intellectual
property (3PIP) vendors and their circuit designs. With the
increasing number of transactions between vendors and system
integrators, the threat of IP reuse and piracy has become a
significant consideration for the IC industry. What is more, the
correctness of 3PIP designs should be verified before integration,
imposing another challenge for 3PIP vendors since they have
to prove the functionality of their designs to system integrators
while protecting the privacy of the circuit implementations. To
eliminate this deadlock, we utilize the cryptographic technique
of “zero-knowledge proofs” to enable 3PIP vendors to convince
system integrators about various functional properties of a circuit
(e.g., area, power, frequency) without disclosing its netlist (i.e.,
in zero-knowledge). Our approach comprises a circuit compiler
that transforms arbitrary netlists into a zero knowledge-friendly
format and a library of modules that provide cryptographic
guarantees for various properties of the netlist while hiding the
actual gates. We evaluate our method using combinational and
sequential circuits from the ISCAS and ITC benchmark suites.

Index Terms—Circuit simulation, Hardware security, IP theft,
IP verification, Privacy-preservation, Secure computation, Trust-
worthy hardware, Zero-knowledge proofs

I. INTRODUCTION

THE advent of the Internet of Things (IoT) has made
possible an extensive set of applications such as trans-

portation systems, healthcare, home automation, and many
more [1], [2]. Because of the demand for small-size and low-
power IoT devices, manufacturers have adopted more compact
and energy-efficient hardware design paradigms. As a result,
System-on-Chip (SoC) has conquered the market from multi-
chip designs by combining lower power and area consumption
with increased reliability and functionality, all into a single,
integrated chip (IC). In the contemporary IC supply chain,
some components are designed in-house and are integrated
with a variety of Intellectual Property (IP) cores from third-
party vendors in order to fabricate the IC [3], [4].

The ever-growing demand for IC-based solutions results
in an increase of third-party IP (3PIP) vendors that try to
maximize their profits by providing design standards and

D. Mouris, C. Gouert and N.G. Tsoutsos are with the Department of
Electrical and Computer Engineering, University of Delaware, Newark, DE,
19716, USA. E-mail: {jimouris, cgouert, tsoutsos}@udel.edu.

Manuscript received March 29, 2021; revised July 3, 2021; accepted August
15, 2021.

This work was supported by the University of Delaware Research Founda-
tion under Grant 21A01012.

Copyright © 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

guidelines and also by making their IPs reusable so they
can be utilized by multiple design layouts [5]. 3PIP cores
such as digital signal processors (DSPs) and FFT engines
are commonly adopted by chip designers to serve specific
purposes in the overall system. This widespread appropriation
of 3PIP becomes an attractive target for malicious users and
rogue foundries that attempt to trick honest parties and steal
their IPs for financial gain [6]. Attackers continue to find novel
and elaborate ways to illegally pirate an IP, such as system-
level analysis [7] and reverse engineering [8]. Thus, finding
solutions to IP piracy and drawing the attention of the IC
supply chain to security instead of solely functionality and
performance is a major concern.

In the modern IC business model, an essential step of SoC
design is IP core verification [9], [10]. First, system integrators
(i.e., IP consumers) provide some functional requirements to
the 3PIP vendors, who in turn design circuits that meet these
specifications. The goal of IP core verification is to prove
the functionality of the generated 3PIP designs to system
integrators. However, confirming that the circuit complies with
the specified properties while achieving high testability is a
major challenge in the IC supply chain. Researchers have
come up with various solutions, namely application-specific
instruction-set processors [11], formal logic verification [12],
satisfiability (SAT) solvers [13], and simulation-based meth-
ods [14]. Yet, all these solutions focus more on the functional
verification of IP designs rather than protecting their privacy.
Recent research directions leverage homomorphic encryption
to securely outsource the evaluation of the 3PIP netlist to a
third party [15]–[17]. However, these approaches only protect
the input vectors: the netlist designs can still be visible
since homomorphic operations, in this case, do not provide
functional privacy (i.e., only data privacy).

Motivated by the lack of netlist-level privacy preservation,
we propose a novel method that utilizes zero-knowledge (ZK)
proofs to resolve the deadlock of mutual distrust between
3PIP vendors and IP consumers. In this case, the former
withholds an IP until a financial agreement is made (due to
the IP piracy risk), while the latter refuses to purchase an
IP without being convinced that it meets all of the agreed-
upon specifications. To instantiate our strategy, we developed
the Pythia framework that enables system integrators to verify
that a potentially untrusted 3PIP vendor possesses an IP that
satisfies some agreed-upon properties without having access
to it (i.e., gaining “zero” knowledge about the IP). One key
contribution in Pythia is the conversion of a netlist into a zero
knowledge-friendly format that can be evaluated with public
test input vectors and generate a public output along with a
proof which verifies that the output was computed faithfully.

https://orcid.org/0000-0002-2601-203X
https://orcid.org/0000-0002-7670-830X
https://orcid.org/0000-0002-5769-0124

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

The back-end of our framework relies on a state-of-the-
art ZK protocol called “Scalable Transparent ARgument of
Knowledge” (zk-STARK) [18], [19] to implement a library of
special state machine modules that can evaluate both combi-
national and sequential circuits in zero-knowledge and further
prove various functional properties such as performance, area,
and power. Developing these modules as ZK state machines
enables Pythia to argue about their computational integrity and
offer provable guarantees that the IC netlist properties are
verified faithfully. Pythia allows the evaluation of 3PIP netlists
as Boolean circuits without revealing the netlist itself by
encoding input test vectors into a judiciously selected format
compatible with our ZK state machine modules. Each state
machine consumes a 3PIP netlist as private (secret) input and
test vectors as public inputs; Pythia executes the corresponding
ZK state machine on these inputs and generates cryptographic
proofs asserting that the output of evaluating the private netlist
with the public inputs is correct and computed faithfully.

Overall, in this work we claim the following contributions:
• Circuit compiler: Development of a compiler that can

automatically translate any Boolean circuit (combina-
tional and sequential) into a serialized encoding that
can be interpreted by our ZK state machines. Our novel
compiler resolves any inter-dependencies between inter-
mediate gate inputs and upstream gate outputs.

• ZK state machine modules: Design of a library of
ZK state machines that can evaluate Boolean circuits on
any input test vector while preserving the privacy of the
netlist itself. On top of this functionality, the developed
ZK modules can also prove in zero-knowledge various
properties of the netlist, such as estimated area, critical
path delay, and expected power consumption.

• Optimizer: Performance enhancements by utilizing bit-
packing and graph-coloring techniques for optimal allo-
cation of the intermediate wires of Pythia’s ZK state ma-
chine vector. Furthermore, Pythia automatically divides
the compiled 3PIP netlist into independent shares that can
be evaluated in parallel, while cryptographically proving
continuity between all these consecutive shares.

Roadmap: In Section II we discuss background notions
such as zero-knowledge proofs, pseudorandom functions, and
our threat model, while in Sections III-V we elaborate on
our privacy-preserving IP verification methodology, including
our special ZK modules and performance optimizations. We
present the evaluation of our framework in Section VI, fol-
lowed by related work in Section VII. Finally, our concluding
remarks are summarized in Section VIII.

II. CRYPTOGRAPHY BACKGROUND

A. Zero-Knowledge Proofs Primer

Zero-knowledge proofs (ZKPs) are cryptographic primitives
involving two parties: a (potentially untrusted) prover P and a
verifier V . With ZKPs, P can prove to V knowledge of a secret
(known as the witness) that satisfies certain properties [20].
ZKPs enable a plethora of applications such as privacy-
preserving computation, electronic voting, blockchains, and
others [21], [22]. In a simple, yet powerful example, P wants

to prove that she knows a preimage (secret witness w) for a
hash digest chosen by V , without revealing what the preimage
is [23]. To formalize the above statement, let us assume an
algorithm A that implements a cryptographic hash function
(e.g., SHA-256), compares the computed output to a public
input x (i.e., the hash digest chosen by V) and outputs a
Boolean value y whether the two hashes match or not:

y = A(x,w) =

{
True, if SHA-256(w) ≡ x

False, otherwise

In a zero-knowledge protocol, P computes the value A(x,w)
locally without revealing w, and provides strong cryptographic
guarantees to V that A was evaluated faithfully. If the result is
True, then V is convinced that P knows a correct witness
w to make SHA-256 return x. The most prominent ZKP
constructions rely either on arithmetic circuits [24], [25] or on
random access machines (RAM) [26]–[29]. The former class
requires an expensive, trusted pre-processing phase that binds
the two parties to a static arithmetic circuit for each different
A. Conversely, RAM-based protocols are more powerful and
flexible as they do not depend on a specific computation and
can verify any state transition in the RAM.
RAM-based ZK protocols: In a typical RAM-based protocol,
the prover P evaluates locally a publicly-known algorithm A
using the public x and private w input values, and records the
execution transcript of the RAM as a sequence of intermediate
states of the state machine. In the generated transcript, all
state transitions satisfy special cryptographic constraints that
are expressed as low-degree polynomials over a finite field F
and should hold during the execution of A(x,w).

By design, zero-knowledge protocols ensure that nothing
is revealed about w beyond the fact that V has faithfully
executed A(x,w) and the output is y. Additionally, ZKP
systems satisfy two important properties: completeness and
soundness. Completeness means that an honest P who actually
knows the witness w to a computation can always convince
V , while soundness refers to the property that a malicious P
cannot convince V of a false statement except with negligible
probability [30], [31].

B. How zk-STARK Proofs Work

Pythia employs the provably secure zk-STARK protocol
[18] as its zero-knowledge back-end, which enables RAM-
based ZKPs and comprises two phases: arithmetization and
low-degree testing. The former refers to the reduction of
a computational problem A into the algebraic problem of
checking whether a certain polynomial has a low degree. The
low-degree testing phase employs Reed-Solomon (RS) error-
correction codes and RS proximity testing to show that the
generated polynomial is actually of low degree [32]. Contrary
to other ZK protocols, zk-STARK supports a universal trust-
less setup, as we discuss in Section VII.
Arithmetization: P first expresses A as a sequence of T
vectors that correspond to an execution trace. Each vector
represents a single step of the computation, while the set of
vectors compose A. Then, for every two consecutive vectors
in the execution trace, P and V agree on a set of assertions
(expressed as polynomial constraints on field F) that should

D. MOURIS ET AL.: PRIVACY-PRESERVING IP VERIFICATION 3

hold during the execution (e.g., if two values are added, the
result equals their sum). If any of these constraints are not
valid, V would reject the computation since P either did not
know the witness w or tried to cheat by tampering with the
execution trace. In the last step of arithmetization, P uses w
to compute a valid execution trace (T steps long) along with
polynomial constraints and combines them by computing their
linear combination to generate a single low-degree polynomial.
Low-degree testing: In this step, P convinces V that a given
function f : L → F is equal to a polynomial of degree
smaller than a constant d. In other words, there exists a
polynomial over F that agrees with f in the entire domain
(i.e., ∀x ∈ L : p(x) = f(x)) and its degree is less than
d. Typically, this problem requires querying the polynomial
at every point in L since it might agree with f at every
other point except one. P’s goal is to enable V to query
auxiliary functions on locations of V’s choice, however, the
verifier may not trust the prover to be honest. To solve this
problem, P can use cryptographic commitments to functions
of her choice [33], [34], and employ Merkle trees so that V
can request P to reveal any of them. Commitments ensure
that P will reveal the correct values she initially committed
to and has not cheated. zk-STARK utilizes the FRI protocol
(Fast Reed-Solomon Interactive Oracle Proofs of Proximity)
that reduces the number of queries to be logarithmic to the
size of L by recursively splitting the original polynomial into
two polynomials of degree less than d/2 until P can send a
constant value to V [32]. By proving that the function encoding
the execution trace and the constraints is of low degree, P
proves she knows a w so that the computation A(x,w) outputs
y. To prevent leaking any information about w, P selects a
random value R so that R� T , generates a sequence of values
{b1, . . . , bR−T }, and computes the interpolating polynomial by
combining this random sequence with the RAM’s execution
trace coefficients using Lagrange’s interpolation method.
zk-STARKs in Pythia: In this work, we generalize the SHA-
256 example (discussed in Section II-A) and implement a
library of custom ZK modules that can evaluate both com-
binational and sequential circuits as the public computation
A. Specifically, each ZK module consumes a secret 3PIP
netlist as the witness input w of A, and a public input test
vector x (provided by V); in effect, algorithm A simulates the
private netlist w on input x. Each module is tailored to prove
different aspects of the target circuit, such as functionality,
max frequency, and estimated area/power. Pythia’s evaluation
output is a public vector y combined with a cryptographic
proof of the correctness of the computation.

C. Lightweight Pseudorandom Functions with Extended Input

A deterministic function that can be efficiently computed
on an input block and generate an output block that is
computationally indistinguishable from an output generated
by a truly random function is called a pseudorandom function
(PRF) [35]. In practice, PRFs can be instantiated using secure
block ciphers (such as Speck [36]), which combine a secret key
with an input plaintext block to transform the plaintext into a
(randomly looking) ciphertext block. Leveraging a universal
hash function (UHF), the fixed input block size of a PRF

Algorithm 1 Lightweight Collision-Resistant Hash Function
Input: k ∈ Zq , k′ ∈ F2n , m = (m1,m2, . . . ,m`) ∈ Z`q

1: procedure LCRHFk,k′ (m)
2: H ← m1 · k mod q . q is a prime
3: for i← 2 to ` do . Horner’s method
4: H ← k · (H+mi) mod q . `− 1 iterations

5: return SPECKENCRYPTk′ (H) . Speck alg. [36]

can be extended to a secure PRF of arbitrary input size by
applying a UHF operation before invoking the PRF (i.e., a
PRF (UHF (·)) composition) [37, Section 4.2].

Based on the blueprint of Carter and Wegman [38], a UHF
U can be constructed as a polynomial of degree-` modulo a
prime number q that is evaluated at input point k. As discussed
in [39], U can be defined over ` input blocks m1 to m` (treated
as polynomial coefficients) and a secret key k. In this case,
Uk(m1, . . . ,m`) = m1k

`+m2k
`−1 + · · ·+m`k mod q, with

mi ∈ Zq , is a lightweight UHF with a collision probability ε ≤
`/q for any pair of distinct inputs [40]. Using Horner’s method,
U can be computed iteratively and can be encrypted using
the Speck cipher with key k′ to construct an efficient, secure
PRF with input extended over ` blocks. This PRF prevents
adversaries from detecting if a collision has occurred and is
secure against forgery attacks [41]. Alg. 1 computes the hash
digest of message m with keys k, k′.

D. Threat Model
In this Section, we elaborate on the different threat scenarios

we consider in our approach to address the problem of mutual
mistrust between 3PIP vendors and system integrators. Our
threat model is twofold: on one hand, we assume a cheating
prover P that does not possess an IP and attempts to trick
an honest verifier V , and on the other hand, we assume a
cheating verifier V that tries to learn any information from the
communication with P about the IP.
Cheating Prover: A cheating P is an adversary with access
to the capabilities of a 3PIP vendor and has incentives to
deceive the system integrator (V) while attempting to sell an IP
that does not meet the agreed-upon functionality. The buyer
(system integrator) is expected to test the IP using multiple
input vectors and verify the correctness of the outputs, along
with the attached ZK proof. The adversary succeeds if she
produces a false proof that will convince V to accept it. Pythia
features a configurable security parameter λ that defines the
soundness error as ε = 2−λ and determines the probability
that an adversary can successfully deceive an honest V in the
above interactions. Minimizing ε is possible by increasing the
interaction rounds between P and V [18], [32].
Cheating Verifier: Here, a malicious V is assumed to behave
without restrictions and not necessarily follow the protocol
specification in order to extract any information about the
secret IP. For example, a cheating buyer (system integrator)
may attempt to learn the IP netlist before paying, even though
the vendor (P) does not wish to disclose the netlist until after
payment is received. If P follows the protocol faithfully, V
will never learn anything about the private witness w from
interacting with P , except the fact that A(x,w) is true, which

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Overview of Pythia: (a) The 3PIP vendor (P) possesses an IP described in a Hardware Description Language. (b) P synthesizes the IP and generates
a gate-level netlist. (c) P determines the evaluation order of the gates and transforms the IP into a zero-knowledge friendly encoding for ZK state machines.
(d) P minimizes the number of intermediate wire values required to evaluate the netlist and divides the encoding into independent shares that can be evaluated
in parallel. (e) The 3PIP vendor executes a module (e.g., functional, performance, area verification) with the circuit specification as private input and public
test vectors chosen by the IP consumer. (f) The two parties interact and P convinces V about the computational integrity of the zero-knowledge evaluation.

is guaranteed by the underlying ZK protocol. Lastly, we don’t
consider trivial cases where V completely withdraws from the
protocol between the two parties (e.g., by ignoring messages).

III. THE PYTHIA FRAMEWORK

A. Overview of Pythia

In this work, we present the Pythia framework: a novel
method for privacy-preserving 3PIP verification. Pythia uti-
lizes zero-knowledge proofs to enable IP vendors to prove
to IP consumers that they possess a 3PIP with some agreed-
upon functional specifications without revealing its design. In
addition to functional verification, Pythia enables proving in
zero-knowledge various circuit properties, such as estimated
performance, area, and power. To that end, we have designed a
library of ZK state machine modules where each one consumes
a netlist as private input and proves a different property of the
circuit. An overview of our framework is depicted in Fig. 1
and discussed in the following sections.

1) Privacy-Preserving Functional Verification: The funda-
mental idea of the Pythia framework is to enable 3PIP vendors
(who act as P) to prove to system integrators (i.e., V) that they
possess an IP with some predetermined specifications. In the
first step of our methodology, depicted in Fig. 1(a), the 3PIP
vendor synthesizes an IP described in a Hardware Description
Language (HDL), such as Verilog, and creates a gate-level
netlist. Consecutively, P uses the circuit compiler of Pythia
to determine the evaluation order of the gates and resolve any
inter-dependencies between gate inputs and outputs from pre-
vious gates, before finally converting the IP into a ZK-friendly
format that can be evaluated by Pythia’s ZK state machine. In
the next step, P utilizes Pythia’s optimizer to minimize the
number of intermediate wires required to evaluate the circuit
by employing bit-packing and graph coloring techniques. The
optimizer also splits the netlist into multiple parallel shares
that can be evaluated independently in ZK. Then, P and V
agree on the algorithm A that P will execute (i.e., a state
machine that evaluates circuits), and the verifier provides test
vectors for the IP that are encoded as public inputs x. Finally,
P executes A locally to simulate the private netlist (input w)
using the public test vector (input x) and computes a public
output y that is sent to V along with a secure cryptographic
proof that the circuit simulation was carried out faithfully.

2) Library of ZK Modules: Besides functional verification,
Pythia supports various algorithms as zero-knowledge state
machines, dubbed ZK modules, that can be used to prove
different properties of the private netlist without revealing any

details about it. More specifically, we implemented a library
of modules that can assess (a) the expected performance of a
circuit by estimating its critical path, (b) the area of a circuit
by analyzing the different types and numbers of gates, and (c)
the estimated power consumption based on the gate switching
activity. Each module is implemented as a different zero-
knowledge computation (i.e., as a different A algorithm) that
can be executed within Pythia. Notably, in all aforementioned
modules, the input IP netlist always remains hidden from V .

3) Pythia back-end: The back-end of Pythia utilizes the
zk-STARK protocol [18] to argue about the computational
integrity of its state machine that simulates a circuit netlist and
verifies different properties of it. Internally, Pythia leverages
zk-STARK’s programming interface to implement the arithme-
tization procedure and enable expressing a computation as a
sequence of state machine transitions along with polynomial
constraints that should hold during that computation. Then,
Pythia employs these constraints to prove the correctness of
the execution and all transitions of the state machine.

In our approach, we implement a circuit simulator as a state
machine, and its state vector is initialized with all zeros. Each
step of the circuit simulation algorithm copies the previous
state vector, modifies at most one value of it, and appends
it after the previous state vector. The generated sequence of
state vectors comprises a two-dimensional table that represents
the computation (i.e., the execution trace in Section II-B).
Each new state vector can be updated in a variety of different
ways, each of which corresponds to the desired operation
that is performed in zero-knowledge. These operations can
be arithmetic such as addition and multiplication, bitwise
(i.e., conjunction, disjunction, etc.), comparisons, as well as
operations that affect the control flow (e.g., a multiplexer). As
discussed, our state machine supports two different types of
inputs, namely public (for the test vectors that V provides), and
private that correspond to the witness (i.e., the netlist that only
P knows). Leveraging the security guarantees of zk-STARK
[18] in our back-end, Pythia asserts the validity of each
transition in the execution trace (each corresponding to a state
machine transition) by imposing polynomial constraints and
asserts their satisfiability to V . In effect, Pythia achieves the
seemingly impossible task of convincing a system integrator
about the functionality and various properties of an IP without
ever revealing its composition.

B. From IP Netlists to ZK-friendly Encoding
Pythia enables automatic compilation of IPs described as

HDL programs into a zero knowledge-friendly format that can

D. MOURIS ET AL.: PRIVACY-PRESERVING IP VERIFICATION 5

be interpreted and utilized by our back-end.

1) RTL Synthesis: As illustrated in Fig. 1b, Pythia syn-
thesizes HDL (e.g., Verilog) programs into netlists consisting
of logic gates and primitive memory structures like flip-
flops. Without loss of generality, Pythia employs the Yosys
Open SYnthesis Suite framework that performs RTL synthesis
on an IP implemented in Verilog and generates the corre-
sponding netlist in the Electronic Design Interchange Format
(EDIF) [42]. During RTL synthesis, Pythia instructs Yosys to
perform various optimizations, like removing unused wires and
mapping cells to standard logic gates and small multiplexers.

2) Combinational Circuits: The generated EDIF netlist is
provided as an input to our compiler (Fig. 1c), which parses the
circuit and identifies all of its gates and wires. Our compiler
then performs a second pass in which it associates each gate
with specific input and output wires, and uses this information
to determine the correct evaluation order of the gates, and
eliminate any dependencies between intermediate gate inputs
and upstream gate outputs by creating a directed acyclic graph
(DAG). Pythia’s DAG determines the evaluation order of the
circuit’s gates by tracking which gates precede each specific
gate and then running a topological sort that resolves all of the
dependencies in the netlist. After eliminating all dependencies,
our compiler serializes the circuit so that Pythia’s ZK state
machine can prove all gates in sequence. Our compiler also
transforms any gates of the circuit that take more than two
inputs into a combination of two-input gates; for instance, a
three-input AND gate is transformed into a pair of two-input
AND gates. Finally, Pythia assigns a gate identifier to each
logic gate (i.e., AND, OR, XOR, etc.) and writes the encoded
IP to a file that is used as witness input w by our ZK modules.

3) Sequential Circuits: Evaluating sequential circuits can
be achieved similarly; however, due to complex structures
such as the clock signal and flip-flops, they involve a more
complicated encoding than combinational circuits. In a soft-
ware simulation setting where each gate operation amounts
to a function call and cannot be “re-used” in the same way
that hardware can, sequential evaluation is non-intuitive. The
first and most important problem is to deal with the clock.
We address this by effectively “unrolling” the circuit for each
clock cycle and re-evaluating the gates when the clock ticks.
Specifically, on the first clock cycle we fully evaluate the
circuit and when a flip-flop is encountered, we set its output
to 0 and buffer the input. At the start of the next clock cycle,
the buffered input to the flip-flop is propagated to the output
and the circuit is re-evaluated. We observe, however, that this
method of re-executing the entire circuit on each clock cycle
remains inefficient since many gate outputs remain unchanged
between consecutive clock cycles. To account for this, Pythia
re-evaluates only the gates that depend on upstream flip-flops
in the dependency graph. This effectively means that if a flip-
flop is encountered on the same path as any given gate in
the circuit, this gate is re-evaluated for each clock cycle. This
strategy ensures that any gates not connected to and influenced
by a sequential circuit element are not needlessly re-computed.

Algorithm 2 State Machine for Circuit Evaluation
Input: Circuit C netlist (private), test-vector (public)

1: procedure EVALUATECIRCUIT
2: H ← 0 . Keeps track of the LCRHF of the IP

3: for idx ∈ Cprimary−inputs do
4: read t from test-vector . Test vector input bit 0/1

5: ~S[idx]← t . Initialize the state vector (~S)

6: for gateID, in1, in2, out ∈ C do
7: H ← LCRHFk,k′(H, gateID, in1, in2, out) . Alg. 1

8: if gateID = AND then
9: ~S[out]← ~S[in1] ∧ ~S[in2]

10: else if gateID = XOR then
11: ~S[out]← ~S[in1]⊕ ~S[in2]
12: else if gateID = . . . then NAND, NOR etc.

13: return ~S,H

C. Zero-Knowledge Circuit Evaluation

The fundamental operation of Pythia is the evaluation of
Boolean circuits by executing a zero-knowledge state machine
on any input test vector while preserving the privacy of the
actual netlist. At a high level, Pythia first evaluates all these
private gates and also proves the integrity of the computation.
The initial state of our ZK machine corresponds to a vector
filled with zeros and the state transitions denote the evaluation
of logic gates. In each step, Pythia reads a logic gate from
the private input, and depending on the type of gate, it
determines what operation to perform on the two input wires
to compute the correct output. The first level of gates (i.e.,
the gates with no dependencies) read circuit inputs directly,
while intermediate gates depend on the outputs of preceding
gates; to evaluate such gates, Pythia further identifies where to
read their inputs from. Therefore, after each gate evaluation,
we store the output at a pre-determined index location of the
state vector, which is also encoded in the private input.
Gate evaluation: For each gate evaluation, Pythia encodes the
gate identifier and three state vector indices: two for the gate
input values and one for the output of the gate. Moreover, all
test-vectors and the state machine algorithm A that evaluates
Boolean circuits are public so that both P and V can access
them; conversely, the gates and the indices used to evaluate
each one are only known to P . Although V is oblivious to
the target 3PIP netlist she verifies, V is convinced that P has
correctly evaluated a circuit using the public input vector, and
generated the given public result.
Test vectors: System integrators would typically send many
different input vectors to verify that the 3PIP claimed by P
satisfies the predetermined functional specifications. Never-
theless, since our methodology hides the 3PIP from V by
design, the verifier cannot simply trust that P did not alter the
target netlist across evaluations with different test vectors. In
other words, a malicious P could trick an honest V by using
a different netlist each time, in an effort to prove a single
3PIP satisfies the required properties (across all test vectors),
when such 3PIP may not actually exist. This is a crucial
concern that would violate our threat model (Section II-D). To
eliminate any such risks for V , while still keeping the 3PIP
private, Pythia employs a secure PRF to generate authenticated

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

digests from the circuit during each evaluation. Effectively,
this proves to V that the same exact IP is used across all
evaluations with different test vectors. Moreover, since proving
the computation of a PRF in zero-knowledge may increase the
execution overhead, we employ a lightweight PRF to minimize
this impact on circuit evaluation; Pythia employs the PRF
described in Alg. 1 with k, k′ pre-shared between P and V .
Circuit evaluation: Alg. 2 outlines the state machine used to
prove functional properties of any circuit while evaluating it
in zero-knowledge. In line 2, we initialize the hash digest H
that Pythia generates during the evaluation of the 3PIP, while
in lines 3 and 4 the state vector (~S), which stores the value
of every wire in the netlist, is initialized with the public test
vectors selected by V . Then, the state machine iterates until
it evaluates every private gate: First, Pythia reads the gate
identifier along with input and output indices (line 6), and
updates the hash digest using the PRF from Alg. 1 (line 7).
Next, depending on the type of gate, the state machine carries
a different operation on the inputs and updates the state vector
at each out index with the computed output. At the end of the
evaluation, Pythia returns the resulting state vector along with
the hash digest of the IP as computed by the PRF.

IV. LIBRARY OF MODULES

Using our state machine for circuit evaluation as a backbone
(i.e., Alg. 2), we design a library of auxiliary (AUX) modules
that can prove in zero-knowledge various properties of the
target 3PIP. In this section, we elaborate on three such mod-
ules that focus on area, power, and performance verification,
without revealing any details about the corresponding circuit.
As discussed in Section III-B, Pythia performs various opti-
mizations during RTL synthesis to remove redundant blocks
or unused wires, as well as transform any gates of the 3PIP
that have more than two inputs into a combination of two-
input gates. Thus, all AUX modules operate on technology-
independent reduced netlists.

An important observation is that all our modules process all
the gates of the 3PIP regardless of the inputs, resulting in a
constant time execution across different test-vectors. To prove
that the same 3PIP was used as private input for functional
verification across all AUX modules, Pythia computes a secure
hash digest of the 3PIP netlist while it parses it. This hash can
then be compared against the hash computed by the circuit
evaluation module of Pythia, proving that P did not switch
the 3PIP across the different AUX modules.

A. Area Verification Module

The first AUX module we propose is an area verification
state machine. In computer-aided design (CAD) context, area
complexity typically refers to the problem of estimating the
minimum number of gates required to implement a Boolean
function by only having access to the high-level description
of the function [43], [44]. Therefore, previous works have
focused on developing different techniques to estimate the area
before implementing a design. Nevertheless, our ZK use-case
is somewhat different since P has access to both the HDL
description and the EDIF netlist of the IP. In particular, our
approach focuses on proving to system integrators that P owns

Algorithm 3 Module to Prove Gate Distribution
Input: Circuit C netlist (private)

1: procedure AREAMODULE
2: H ← 0 . Keeps track of the LCRHF of the IP

3: ~G← [0, . . . , 0] . Initialize gate vector (~G) with zeros

4: for gateID, in1, in2, out ∈ C do
5: H ← LCRHFk,k′(H, gateID, in1, in2, out) . Alg. 1

6: ~G[gateID]← ~G[gateID] + 1 . Gate type counter

7: return ~G,H

a 3PIP that meets some functional specifications, and on top
of that, it satisfies certain area constraints.

In Pythia, we calculate the area of a circuit by tracking
the different gate types and the cardinality of each gate. Our
starting point is the circuit evaluation process discussed in
Section III-C. Our area verification module, summarized in
Alg. 3, utilizes different indices in a gate vector (~G) to track
the number of flip-flops (FFs) and each gate type comprising
the private 3PIP netlist (e.g., AND, OR, NOT, XOR, NAND, NOR,
and XNOR). Each time a gate or FF is read from the private
input, Pythia increases the corresponding ~G counter by one
and then continues to the next. When all gates and FFs have
been evaluated, Pythia outputs the hash digest and the ~G value.
The former is used to prove that the same private 3PIP was
used in this module as in the functional verification case, while
the latter contains the values of all counters that can estimate
circuit area and track the gate type distribution.

B. Performance Verification Module

The second property we can prove with Pythia using static
analysis is the performance of a circuit by calculating the path
logical effort [45] between inputs and outputs and locating the
critical path of a circuit, which is the path with the longest
delay. Different gates introduce different delays: for instance,
AND and OR gates have approximately the same delay, whereas
XOR gates incur higher delays since they may be constructed
by a combination of other basic gates [46]. All gate delays are
expressed in terms of a basic delay unit τ , which is the delay
of an ideal fan-out-of-1 inverter with no parasitic capacitance.
We formalize the absolute gate delay as the product of the
normalized delay of the gate d and the basic delay unit τ . The
normalized delay of an individual gate can be broken down
into the summation of the delay of the gate that is dependent
on the load f (i.e., stage effort), and the delay when the gate is
not driving any load p (i.e., parasitic delay). Additionally, the
stage effort f consists of logical effort g and electrical effort
h (i.e., the fan-out), such that f = g · h. The logical effort is
the ratio of the input capacitance of a given gate to that of an
inverter capable of delivering the same output current, while
the fan-out is the ratio of the input capacitance of the load to
that of the gate. Thus, the normalized delay of a single gate
can be calculated by the following equation:

d = g · h+ p. (1)

We summarize the parasitic delay and stage effort of different
logic gates in Table I. Notably, these delays are part of our
AUX module configuration and Pythia can easily substitute
them with new delays in order to model a specific technology.

D. MOURIS ET AL.: PRIVACY-PRESERVING IP VERIFICATION 7

TABLE I
LOGICAL EFFORT AND PARASITIC DELAYS OF COMMON LOGIC GATES.

Logic Gate Num. of Inputs Logical Effort g Parasitic Delay p

NOT 1 1 1
NAND 2 4/3 2
NOR 2 5/3 2
AND 2 7/3 3
OR 2 8/3 3

XOR/XNOR 2 4 4

In Pythia, we implement the path logical effort method-
ology as introduced in [45], which is an extension of the
aforementioned method for computing the delays of single
gates. Given a path, the path logical effort G equals the
product of the logical efforts of all the logic gates along the
path (i.e., G =

∏
gi), whereas the path electrical effort H

is the ratio of the capacitance of the last logic gate of the
path to the input capacitance of the first gate in the path
(i.e., H = Cout(path)/Cin(path)). We also calculate the path
branching effort B as the product of the branching efforts at
each of the stages along the path. The path effort F is defined
as the product of the logical, electrical, and branching efforts
of the path (i.e., F = GBH) and is used to minimize the
delay of a certain path; the latter is minimized when the stage
effort in each stage along the path is the same. Finally, the
minimum delay achievable along the path is computed by

D̂ = NF 1/N + P, (2)

where P is the path parasitic delay and equals the sum of the
parasitic delays of each gate in the path (i.e., P =

∑
pi).

Our Heuristic Method: Minimizing the delay for every single
path using the path electrical effort method incurs exponen-
tial overheads due to the number of input to output path
combinations. For large circuits, this approach does not scale
gracefully, which motivates the need for tailored optimizations
in the context of ZK performance verification. Therefore, we
introduce a novel and efficient heuristic that uses the single
gate logical effort method (i.e., Eq. 1) to cascade the delays
of the gates of any netlist in a single pass of the circuit and
to identify the critical path. In particular, for each gate on a
path, our heuristic method propagates the maximum upstream
delay of both gate inputs and adds the normalized delay d of
that gate. Since a forward parsing1 of the netlist does not allow
computing the exact electrical efforts h of each individual gate,
our heuristic assumes that h is an integer equal to the fan-out
of the gate (i.e., number of output wires). This assumption
significantly reduces the computation cost and makes this
method a heuristic; our ISCAS experiments demonstrate the
high accuracy of our heuristic, as it can always correctly
identify the critical path, while the heuristically computed path
delay incurs less than 5% error in all cases.

After we identify the critical path, we apply the exact path
logical effort method (i.e., Eq. 2) solely to the critical path.
Pythia optimizes the aforementioned algorithm to compute
the path logical effort of a path by updating all necessary
parameters for Eq. 2 as we compute the heuristic delay,

1We always analyze the netlist in the same way as with the other modules
(i.e., using a forward-pass), to prove the same netlist digest H is computed.

Algorithm 4 Module to Compute Path Logical Effort
Input: Circuit C netlist (private), Path electr. effort H (public)

1: procedure PERFORMANCEMODULE
2: H ← 0 . Keeps track of the LCRHF of the IP

3: ~D ← [0, . . . , 0] . Initialize the heuristic delay vector

4: ~G, ~B ← [1, . . . , 1] . Path logical and branching effort vectors

5: ~P , ~N ← [0, . . . , 0] . Path parasitic delay and gate counter vectors

6: for idx ∈ Cprimary−inputs do
7: read b from C . Read branching effort value b

8: ~h[idx]← b . Initialize the fanout vector (~h) for primary wires

9: for gateID, in1, in2, out, b ∈ C do
10: H ← LCRHFk,k′(H, gateID, in1, in2, out) . Alg. 1

11: ~h[in1]← ~h[in1]− 1 . in1 is used, decrease b for wire 1

12: ~h[in2]← ~h[in2]− 1 . in2 is used, decrease b for wire 2

13: assert ~h[out] = 0 . Assert that b at index out was correct

14: ~h[out]← b . Update b for current gate at index out

15: if ~D[in1] > ~D[in2] then max← in1 . Set max to

16: else max← in2 . the wire with the maximum heuristic delay

17: ~N [out]← ~N [max] + 1 . Count gates in critical path

18: ~B[out]← ~B[max] ∗ b . Update path branching effort

19: if gateID = AND then
20: ~D[out]← ~D[max] + 7b

3 + 3 . Update heuristic delay

21: ~G[out]← ~G[max] ∗ 7/3 . Update path logical effort

22: ~P [out]← ~P [max] + 3 . Update path parasitic delay

23: else if gateID = . . . then cf. Table I for NAND etc.

24: idx← argmax(~D) . Find the index of the maximum value in ~D

25: return ~G[idx] ∗ ~B[idx] ∗H, ~N [idx], ~P [idx], ~D[idx],H

requiring only a single pass. Notably, applying our heuristic
method to all paths (Alg. 4, black text only) uses significantly
fewer state indices than the exact method of Eq. 2 (Alg. 4, both
black and blue text), which effectively reduces the number of
zero-knowledge operations required by our AUX module.
Exact Method: Alg. 4 summarizes our ZK algorithm A for
heuristically identifying the critical path and calculating the
exact path logical effort based on Eq. 2 and the formulas from
Table I. The exact delay computation is highlighted in blue
color and complements the heuristic algorithm (i.e., the black
text). Specifically, Pythia processes the gates iteratively (line
9) and stores the heuristic delay in vector ~D (line 20), based on
the propagated maximum delay of the two input wires (lines
15 and 16). For exact delay computation, Pythia keeps track
of: (a) the path logical effort G by multiplying the logical
efforts of single gates along the path (line 21), (b) the path
parasitic effort P by adding the parasitics of single gates in
the path (line 22), (c) the number of stages in the path N (line
17), and (d) the path branching effort B (line 18). We initialize
five vectors to track D, G, B, P , and N with unique counters
for every logic gate (lines 3–6). After Pythia has processed all
netlist gates, we find the index with the maximum heuristic
delay and use it to return the exact path effort F = GBH
along with the path parasitic delay and the number of gates in
the path.

To compute the path branching effort B, we augment the
serialized 3PIP netlist with the branching information provided
by the Pythia compiler. This creates a unique challenge that
we have to address: “How can we prove that the branching

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Path logical effort calculation: The table depicts how the path logical
effort G, path branching effort B, path parasitic delay P , and the number of
logic stages in the path N counters are used to estimate the delay of any
circuit using the gate delays from Table I. G, B, P , and N are updated
based on the type of logic gate and the formulas in lines 17–22 in Alg. 4.

effort that was read from the serialized encoding is correct?”.
To convince V about this argument in ZK, Pythia tracks the
branching effort of each gate in a separate state vector (~h in
Alg. 4) and decrements the corresponding index every time the
output of one gate is used as input by another (lines 11 and
12). In lines 6–8 we read the branching effort of all input wires
and initialize ~h. When a new gate is processed, we read the
branching effort (b) for this gate and check that the previous
branching effort stored at that index is indeed zero (line 13).
Finally, we update the correct index with the new branching
effort (line 14). Alg. 4 proves the correct computation of G,
B, P , and N to V , who in turn can compute the path effort
F based on the path electrical effort H , which yields the
exact path delay D̂ using Eq. 2. In addition to computing the
critical path delay, this module uses the private netlist input
to construct a hash digest of the 3PIP, so that V can ensure
this hash equals those generated during functional verification
and area verification (i.e., the 3PIP was not switched by P).
Example: In Fig. 2 we demonstrate how Pythia computes ~G,
~B, ~P , and ~N based on the two inputs and the delays from
Table I. On the left-hand side of Fig. 2, we illustrate how ~G
is calculated: Both input counters of gate #1 have an initial
value of 1 and the output counter gets the value 4 since it
is an XOR gate. Similarly, the branching effort and parasitic
delay of gate #1 are 2 and 4 respectively. Lastly, N tracks
the maximum number of gates along each path. Iterating in a
similar manner with the rest of the gates, our method computes
the critical path with G = 24.9, B = 2, P = 10 and N = 3.
The path delays are then computed using the load capacitance
H that V chooses.
Net Delay Estimation: Our aforementioned performance es-
timation method is based on circuit netlist IPs, so it does not
incorporate net delays that depend on placement and routing;
as with the standard logical effort method, our module assumes
negligible wire capacitance and RC delay. Nevertheless, since
interconnection delays are becoming more and more impactful
[47], Pythia provides a heuristic to approximate the net delay
of the critical path by taking into account the total number of
wires in the path as well as an optional distribution of wire
delays. The latter is agreed between P and V and can be
derived from past designs of similar size and technology. If
no distribution is provided, we assume that all wires in the
critical path are “short” and have equal length. In this case,
we adjust Alg. 4 output by adding the path net delays based

on the average delay per wire, as agreed by P and V .

C. Power Verification Module

Pythia also incorporates an AUX module for estimating the
dynamic power consumption of a netlist to convince system
integrators. Apart from dynamic power dissipation, circuits
also draw static power. The former consists of the switching
power (i.e., charging and discharging load capacitances as
gate outputs change), while the latter is consumed through
various circuit nodes and transistor leakages when a chip
is not switching. In this module, we focus on calculating
the gate switching activity of 3PIPs, since the static power
dissipation is negligible compared to the dynamic power
consumption. Various previous works (e.g., [48], [49]) propose
different models to estimate the dynamic power consumption
of netlists, and the core idea in all of these techniques is to
predict the switching activity of the transistors in the circuits.
Specifically, the dynamic power of a circuit can be expressed
as a function of the probability that a gate transitions from 0
to 1, called activity factor α, and the clock frequency f so that
Pdynamic = α · C · V 2

DD · f , where C is the load capacitance
and VDD is the positive voltage [50].

Gate switching highly depends on the inputs and thus, the
activity factor provides a way to estimate the probability that
a gate transitions from 0 to 1 (the reverse transition does not
consume any power [50, 5.1.2]), without exhaustively trying
different input-vectors, which in many cases is impossible.
Since the activity factor depends on the logic function, in
Table II we provide the probabilities Pi that the output of
gate i is 1, based on the probabilities of its inputs A and B
being 1. We also use P i = 1− Pi to denote the complement
probability (i.e., node i is 0). Using the probabilities of each
node, we can derive each activity factor as αi = Pi · P i.

Pythia’s power module processes the private 3PIP in a
similar manner as in the critical path calculation, yet instead of
tracking the different delays, we calculate the activity factor of
each gate. All primary input probabilities are extracted from
the inputs that V has provided, and then depending on the
gate that Pythia reads, we compute the activity factor of each
gate based on the formulas from Table II. For instance, if
the input probabilities in Fig. 2 are PA = PB = PCin

= 0.5,
Pythia estimates the dynamic power consumption of the circuit
as follows: The probability that Gate #1 (i.e., XOR) outputs
1 is calculated as P1 = PA · PB + PA · PB = 0.5,
yielding an activity factor α1 = 0.5 · 0.5 = 0.25. Then,
Pythia processes Gates #2 and #3 (i.e., ANDs) and computes

TABLE II
LOGIC GATES SWITCHING PROBABILITIES: Pi DENOTES THAT NODE i IS 1

BASED ON INPUT A AND B PROBABILITY BEING 1.

Gate Probability Pi

NOT PA

NAND 1− PA · PB

NOR PA · PB

AND PA · PB

OR 1− PA · PB

XOR PA · PB + PA · PB

XNOR 1− (PA · PB + PA · PB)

D. MOURIS ET AL.: PRIVACY-PRESERVING IP VERIFICATION 9

Fig. 3. Adder evaluation: The numbers on the gates denote the evaluation
order, also illustrated by the row labels of the table (execution trace) on the
right-hand side. The green values represent which variable changed after the
evaluation of the gate denoted by the row number. The variables r0–r3 can be
interpreted either as four separate indices or as one 4-bit block. The serialized
private input encoding a part of the above circuit is depicted on the bottom.

P2 = PB · PA = 0.25 and P3 = PCin · P1 = 0.25 which
result in α2 = α3 = 0.25 · 0.75 = 0.1875. Likewise,
P4 = P1 · PCin

+ P 1 · PCin
= 0.5, and α4 = 0.25, while

the probability that Gate #5 (i.e., OR) is 1 is computed as
P5 = 1 − (P 3 · P 2) = 0.4375, producing an activity factor
α5 = 0.4375 · 0.5625 = 0.246. Instead of arbitrarily setting
the input probabilities, we employ a probabilistic model that
extracts the primary input probability distribution based on
V’s test-vectors. Essentially, the probability of each input is
calculated as the average of a specific input across multiple
test-vectors. As in all library modules, Pythia computes a
secure hash of the private netlist in ZK, so the Verifier can
compare it with the one calculated during functional verifi-
cation to be convinced that the estimated power consumption
was calculated over the same 3PIP.

V. PYTHIA’S OPTIMIZER

In this Section, we propose a series of optimizations to
effectively reduce the size of the state vector, since a smaller
state vector results in improved performance for both P and
V . Finally, we introduce a methodology to split the functional
and property verification modules to exploit parallelization.

A. Efficient Wire Placement Using Register Allocation

Apart from the area verification module that uses a constant
number of state indices to keep track of the numbers and
types of gates for each different netlist, the other modules
require more indices as the total number of gates in the netlist
increases. For small circuits, assigning each wire to a unique
state vector index is feasible, however, for bigger circuits the
size of the state vector required to hold all of these wires grows
significantly, impacting both the time required to generate a
proof and the time to verify it. Therefore, we apply a tailored
register allocation technique that utilizes graph coloring to
minimize the number of unique indices needed to hold the
intermediate wires of a circuit. We incorporate this optimiza-
tion in the Pythia compiler during the IP transformation phase:
instead of assigning unique indices to each wire, Pythia deftly
allocates and re-uses indices for the input, intermediate, and
output wires in the state vector.

Fig. 3 demonstrates how the register allocation technique
effectively reduces the number of unique indices and how they

can be reused to prove the functionality of an adder. Without
this optimization, the circuit in Fig. 3 would require 3 input
(i.e., A, B, Cin), 2 output (i.e., S, Cout), and 3 intermediate
wires (i.e., to hold the results of gates 1, 2 and 3), resulting in
a total of 8 different indices. In Fig. 3 we demonstrate how our
graph coloring technique allocates each wire to an index and
enables Pythia to evaluate the adder with solely 4 indices. The
table on the right-hand side of the figure depicts the execution
trace of the adder (i.e., how the state changes with each gate
evaluation). In the first row of the execution trace the state
vector is initialized with the values of the primary inputs:
A = 1, B = 0 and Cin = 1. In the second row, gate #1 is
evaluated and its output is written at the last index of the state
(highlighted in green). Each row corresponds to the evaluation
of the next gate, while the last row holds the two outputs of
the adder. At the bottom of Fig. 3, we show a part of the 3PIP
witness input w that the Pythia compiler generated from the
adder circuit using register allocation. First, the state machine
reads the XOR gate and the two input variables (r0, r1), then
it evaluates the gate using the contents of the two indices (i.e.,
0 and 1) and stores the result to the output variable (r3 = 1).
Then, our state machine continues to the next operation. This
optimization significantly reduces the total number of required
indices, and as we show later in Section VI-B, this is crucial
for the performance of Pythia.

B. Bit-Packing

Large combinational and sequential circuits that consist of
thousands of wires and gates require a considerable amount
of indices to hold intermediate wire values even when register
allocation has been applied. Register allocation techniques
are not as effective in circuits with many gates at the same
level (i.e., circuits with large width), since all these wires
should hold their values at the same time. An important
observation about our functional verification module is that
each state index stores only a binary value, which yields state
vectors with many indices. Notably, increasing the number of
indices in the state vector impacts the number of zk-STARK
operations, which can affect performance. Therefore, to min-
imize the number of indices, yet continue storing the same
amount of information, we employ a bit-packing optimization
that organizes multiple wires into multi-bit blocks under the
same state vector index. For instance, using this bit-packing
optimization, the state in Fig. 3 becomes a single 4-bit register
R0 instead of four 1-bit registers (r0 to r3). In this example,
R0 will transition as follows: 1011→ 0011→ · · · → 0101.

Specifically, the bit-packing scheme of Pythia can utilize
uniquely-indexed 64-bit blocks, which reduces the number
required by a factor of 64. Notably, Pythia can still access
individual bits within each 64-bit block. To enable this opti-
mization, Pythia’s compiler can encode both the block index
within the state vector and the bit index within the block for
the inputs and output of each gate. Therefore, in addition to
the previous four inputs (i.e., gateID, in0, in1, out in line 6
of Alg. 2), each gate evaluation includes three-bit indices as
well (i.e., one for each input and one for the output). Although
this feature seemingly complicates Pythia’s state machine as it
incurs bit-shift operations to read/write individual bits within

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Chaining execution to enable parallel verification. Pythia divides
large executions into multiple shares and pre-computes the intermediate states
locally. The simulator computes the PRF digest of the machine state and
compares it with the digest provided in the public input to verify its integrity.
Each share can be verified independently and in parallel.

a block, this overhead is negligible compared to the ZKP
cost savings from having fewer state vector entries. This
optimization is mostly applicable to functional verification, as
the power and performance modules already store multiple
bits in each index, while the area module uses a constant state
vector size so bit-packing does not impact its performance.

C. Execution Parallelism

To further optimize the performance of our methodology,
we augment Pythia’s optimizer to enable parallelized proof
generation and verification. Specifically, we observe that all
four Pythia modules operate iteratively over a given netlist.
The execution trace of each module is initialized with a
zero state vector and transitions to different states during the
computation; given any intermediate state and a private 3PIP,
Pythia can always continue the computation and converge to
the correct output. Therefore, we can break down the problem
of proving one big execution trace into the problem of proving
the faithful execution of two smaller execution traces, along
with a provable transition between the two. We refer to each
smaller execution trace that is a part of a bigger trace as
a share. We demonstrate this concept in Fig. 4, where the
sample initial state of the first share is 00000 and after the
evaluation of the share its state becomes 11001. The latter
initializes the second share, which will produce a new state
10110, and so on. The final state 11001 represents the result
of the computation, which can be either the output wires of a
netlist (functional verification), or different counters encoding
the area, performance, or power estimations.

Although the shares in Fig. 4 are constructed honestly by
the 3PIP vendor, V is not able to immediately verify if the
intermediate states are initialized correctly or a malicious
P has modified them. To convince V that these shares are
actually parts of the original execution trace, and also pre-
serve the confidentiality of the intermediate state vectors, we
compute integrity measurements of each state vector using the
lightweight PRF discussed in Section II-C. The 3PIP vendor
calculates these publicly authenticated digests and shares them
with V; notably, only P knows the actual netlist data that
produced each digest. At last, the system integrator verifies
that all PRF digests at the end of each share are the same as
the ones used at the beginning of each next share.

So far, we demonstrated how to decompose a big execution
trace into smaller consecutive shares, and chain them in
order to compute the correct output. Nevertheless, to exploit

Fig. 5. Memory/Efficiency per gate trade-off for the prover. Horizontal axis
shows the maximum number of gates per share that can be evaluated in less
than a power of 2 state machine transitions.

Fig. 6. Time measurements for proving 1 and 96 shares with a different num-
ber of threads per share. The red squares depict the timings for 1 core/share
(prove all 96 in parallel) to 96 cores/share (prove shares sequentially).

parallelism in zero-knowledge we also need to pre-compute the
intermediate state vector values. In this case, Pythia quickly
evaluates the netlist without creating a ZK proof, and computes
the starting and ending state vectors of each share, along with
their PRF digests. The offline execution overhead for P is
negligible compared to the online proof generation timing.
This method is not affected by any dependencies between
consecutive shares, as all intermediate state vectors and their
hash digests are precomputed, so proof generation of each
share can take place in parallel. Finally, V can verify that the
public PRF digests at the end of each share match the ones
used to initialize the next share to ensure correctness.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

In this Section, we evaluate the applicability and perfor-
mance of our framework using selected benchmarks from
the ISCAS’85, ISCAS’89, and ITC’99 suites. To verify the
correctness of our circuit evaluation (Alg. 2), we employ a
variety of input-output pairs for our benchmarks, as well as
two arithmetic cores from [39]: an 8-bit high-radix sequential
multiplier and a 12-bit sequential fast modular reduction core
for Mersenne prime moduli. We synthesize the benchmarks to
produce EDIF netlists using the Yosys Open SYnthesis Suite
framework [42]. We used Verilog and VHDL implementations
for the ISCAS and ITC benchmarks, respectively. Yosys fea-
tures various parameters that produce different netlists depend-
ing on the user’s preferences (e.g., optimize for performance,
space, etc.). In this work, we synthesized our benchmarks with
the proc and flatten flags. Notably, more sophisticated
tools may result in more optimized netlists, however, our goal
in Pythia is to optimize the cost per gate for P and V , rather
than to optimize the benchmarks themselves.

The core of the Pythia framework is implemented in C++,
while Pythia’s compiler and optimizer are implemented in
Python 3. To fully investigate parallelization, we obtained our
experimental results on an m5.24xlarge AWS EC2 instance

D. MOURIS ET AL.: PRIVACY-PRESERVING IP VERIFICATION 11

Fig. 7. P and V experimental results for selected benchmarks from the ISCAS’85 and ITC’99 suites.

Fig. 8. Amortized P and V evaluation time per cycle (over 10 cycles) using selected benchmarks from the ISCAS’89 and ITC’99 suites.

with two Intel Xeon Platinum 8175M cores running at 2.5
GHz and hyper-threading, resulting in 96 virtual cores and
748 GB RAM. The system is running Ubuntu 18.04 with the
4.15.0 Linux kernel and the g++ 7.4.0 compiler.

B. Performance Evaluation

The timing and memory overheads incurred by Pythia’s
back-end highly depend on both the length of the execution
trace and the size of the state vector. As the execution trace
becomes bigger, both the execution timing and the memory
required for P increase. The verification timing is also affected
by the same factors, however, it is always poly-logarithmic
(polylog(T)) to the size of the execution trace T . An important
property of Pythia’s back-end (inherited from zk-STARK) is
that the proving cost for any two execution traces whose size
is less than the same power of 2 is approximately the same
[18]. For instance, a trace with 942 steps incurs roughly the
same timing and memory overheads as a trace that has 1020
steps since both have less than 210 transitions.

1) Splitting Shares Trade-off: In this experiment, we study
the optimal size for our shares by investigating the number of
gates in each share. Increasing the number of shares allows
proving more shares in parallel, however, the cost of calculat-
ing the PRF digest in every share will eventually dominate the
proving time. Conversely, having fewer shares makes the cost
for the PRF negligible compared to the total cost of proving the
evaluation of each share, while the required memory increases
as well. In Fig. 5 we illustrate the aforementioned trade-
off based on the proving time per gate for our functional
verification module: the left vertical axis shows the time
per gate, while the right vertical axis indicates the required
memory for each splitting configuration. While the time for
P increases as the execution trace becomes longer, having
more gates in each share reduces the proving time per gate.
The green triangle trend in Fig. 5 indicates that increasing the
number of gates per share (i.e., having fewer shares) decreases
the overall proving time; however, the associated memory cost
(red squares in Fig. 5) scales linearly with the number of gates
per share. Therefore, the cost for P depends on the number
of shares that can fit in the available memory of the target
host. For our experimental setup, we identified that 9 gates
per share strike a good trade-off between proving time and
required memory.

2) Two levels of Parallelization: Pythia is doubly par-
allelizable: (a) using multiple independent shares, we can
split the computation and evaluate the shares in parallel, and
(b) Pythia’s back-end utilizes multiple threads to parallelize
the proof generation in each share. This motivates our next
experiment that investigates how we can optimize parallelism
in a multi-core host. The green triangles in Fig. 6 present the
proving time for 1 share using a different number of cores. We
observe that having more than 8 cores per share reduces the
relative speedup (diminishing returns), so the cores per share
should be balanced with the number of shares processed in
parallel on all available cores.

Moreover, the red squares in Fig. 6 investigate the total cost
for proving 96 shares by varying the number of allocated cores
per share. On one extreme, we can assign 1 core per share in
order to verify all 96 shares in parallel (i.e., leftmost red square
in Fig. 6), while on the other extreme we can assign all 96
cores to verify 1 share at a time and repeat the process 96 times
(rightmost red square). If we allocate 8 cores per share, we
can verify 12 shares in parallel per iteration (note, we need 8
iterations to verify all 96 shares), our setup achieves the fastest
overall time for P , which further confirms the finding of the
previous paragraph.

3) Discussion of Experimental Results: We evaluate Pythia
using the ISCAS’85, ISCAS’89, and ITC’99 benchmark suites
[51]–[53] with random input test-vectors (chosen by the IP
consumer). Specifically, V is responsible for choosing multiple
test-vectors to supply to Pythia and this selection does not
impact the proving time. We observe that each benchmark’s
proving time depends on the total number of gates in the
netlist, rather than the distribution of the input pattern, even
though different inputs trigger different gates. In Figs. 7 and 8,
we report our performance evaluation results for a selection of
benchmarks, using a splitting of 9 gates per share and 8 cores
allocated per share. In particular, Fig. 8 shows the amortized
cost per cycle (over ten clock cycles) for each of our sequential
benchmarks. As discussed in Section V-C, in order to prove
multiple shares in parallel, P needs to quickly compute the
intermediate state vectors offline (i.e., without generating a
proof). Therefore, each benchmark in Figs. 7 and 8 reports
the aforementioned offline cost (using the yellow bars in the
middle), as well as the online costs for both P and V using
the red (left) and green (right) bars, respectively. All timings

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

depend on the length of the execution trace, which in turn
depends on the number of gates in each netlist share; in this
case, all shares comprise exactly 9 gates, so the trace length is
constant. Thus, the factor that dominates Pythia’s performance
is the number of shares in each benchmark (i.e., the netlist
size).

In the Verilog implementation of the ISCAS’85 benchmarks,
c7552 comprises more gates than c5315; however, after
Pythia invokes Yosys to synthesize and transform all the gates
with more than two inputs into a series of two-input gates,
c5315 has the most gates compared to the other ISCAS’85
benchmarks, and thus incurs the higher P and V costs. We
report the number of gates and wires of our synthesized ISCAS
benchmarks in Table III. One can observe that the proving
time in Pythia scales linearly with the number of shares (i.e.,
d#gates/9e) which is quasi-linear (T · polylog(T)) in the
number of state machine transitions T since each gate involves
a fixed number of transitions. Likewise, Pythia’s verification
time is poly-logarithmic (polylog(T)) in T .

Fig. 9 reports our experimental evaluations for both P and V
using our area, performance, and power estimation modules.
As mentioned in Section V-B, the bit-packing optimization
cannot be applied to the performance and power estimation
modules since they already store multiple bits of information
in each state index. As a result, these two modules incur higher
overheads than the functional verification module due to the
significantly larger state vectors they use. Our performance
module using the exact method for path delays requires
significantly more state indices than any other module to keep
track of all wire delays and therefore incurs considerably
higher overheads. Nevertheless, our heuristic method achieves
highly accurate results (less than 5% error from the exact path
delays of the ISCAS benchmarks), yet it is several orders of
magnitude faster. Likewise, across several ISCAS’85 bench-
marks, our heuristic incurs less than 4% error (on average)
compared to the results from OpenTimer, a popular open-
source static timing analysis tool [54]. Finally, since the area
verification module has minimal requirements (i.e., small and
constant number of indices for all the netlists), it achieves the
fastest performance across all the modules. Moreover, as we
observe in the results of Fig. 9, the overhead of our AUX
modules scales with the total number of gates in each netlist,
while the prover’s performance also depends on the number
of indices of the state vector.

TABLE III
NUMBER OF GATES AND WIRES GENERATED BY PYTHIA COMPILER AND

STATE VECTOR MINIMIZATION AFTER APPLYING GRAPH-COLORING
AND BIT-PACKING TECHNIQUES FOR SELECTED BENCHMARKS.

Combinational
Benchmark c499 c880 c1355 c1908 c3540 c5315 c6288 c7552 b14 C b15 C b17 C

Gates 246 583 1006 1435 2349 3454 2922 2742 4447 7901 24246
Wires 287 643 1047 1468 2399 3632 2954 2949 4722 8384 25696
Vector Size 48 87 72 189 322 569 63 357 574 620 1791
64-bit Blocks 1 2 2 3 6 9 1 6 9 10 28

Sequential
Benchmark s349 s382 s420 s444 s526 s641 s838 s1488 b14 b15 b17

Gates 234 292 322 346 382 455 658 843 4338 8322 25697
Wires 247 299 314 353 389 494 696 855 4369 8357 25733
Vector Size 57 78 83 82 132 78 170 242 772 1015 3756
64-bit Blocks 1 2 2 2 3 2 3 4 13 16 59

4) Bit-Packing: Table III summarizes the numbers of gates
and wires for our ISCAS benchmarks after Yosys synthesis
and demonstrates how our register allocation and bit-packing
optimizations drastically reduce the number of intermediate
wires. Notably, register allocation is less impactful for very
wide netlists, as Pythia maintains all wire values at each
circuit level using unique state indices, which attributes to
increased overheads. For narrower netlists that have smaller
levels (regardless of their depth), our register allocation can
significantly reduce state indices and hence Pythia’s overheads.
For instance, the netlist of c6288 has 2954 wires, and
register allocation can reduce them to just 63, which is a
decrease by almost 50× (c.f., row “Vector Size” in Table III).
Conversely, netlist s526, which achieves a modest decrease
of about 3× according to Table III, would benefit less from
this optimization. When our bit-packing technique minimizes
the state vector size (c.f., row “64-bit Blocks” in Table III)
to a value less than 10, the performance benefits are more
noticeable.

VII. RELATED WORK

In this Section, we discuss the different categories of zero-
knowledge proof systems and our choice of zk-STARK as the
back-end cryptographic protocol of Pythia. The first category
involves systems that need a trusted setup phase for each
different computation they want to prove. This line of work
started from the construction proposed by Gennaro et al. [25]
using quadratic arithmetic programs and continued with the
works in [24], [27], [28]. More recent proof systems utilize
universal and updatable trusted setups that are based on com-
mon reference strings (e.g., [55]). Their advantage compared
to the previous category is that they do not require a trusted
pre-processing phase for each circuit, but only a single setup
for all circuits. Although this method requires only one trusted
setup, neither this nor the first category are applicable for our
threat model since a malicious party that gains access to the
trusted setup phase can always forge false proofs.

The last category includes systems with a transparent setup
(i.e., no requirement for a trusted third-party to initialize the
system). This includes preliminary works in [56]–[58], as
well as zk-STARK-based systems [18], [19]. Pythia’s back-end
relies on zk-STARK as it supports universal, trustless setup in
line with our threat model; moreover, verifiers in zk-STARK
protocols can achieve the best-in-class performance, while the
low-overhead proving times [18].

The authors of [15] proposed a novel technique that lever-
ages homomorphic encryption (a cryptographic primitive that
allows performing meaningful operations on encrypted data)
to enable secure outsourcing and evaluation of 3PIP designs
using encrypted input vectors. In a similar direction, the
authors of [17] propose a framework that converts Verilog
HDL programs into homomorphic circuits with equivalent
functionality, and evaluates them using encrypted input vec-
tors. Both of these approaches allow untrusted third parties
to evaluate an IP while preserving the privacy of the input
test vectors. Nevertheless, since homomorphic operations only
protect data privacy but not applied function (i.e., Boolean
gates remain unencrypted in the source file), the netlist designs
are not protected as in Pythia.

D. MOURIS ET AL.: PRIVACY-PRESERVING IP VERIFICATION 13

Fig. 9. Timing results for P and V of the area, performance (for both exact and heuristic methods), and power modules for selected ISCAS’85 and ISCAS’89
benchmarks. The timings for ISCAS’89 netlists are amortized over 10 cycles. P’s offline costs are reported in Figs. 7 and 8 and are omitted from this plot.
Our heuristic method incurs less than 5% error in all cases, and offer significant performance benefits compared to the exact method.

Previous work has also focused on proving the correctness
and various properties of 3PIP designs using formal logic
verification [12], [59]. These techniques mostly focus on for-
mally checking the correctness of a netlist or a cryptographic
protocol to ensure the design is free of malicious logic, such
as hardware Trojans (e.g., [60]). Yet, such methods focus
on comparing the netlist with a formal mathematical model
of the circuit and exclude any privacy protections for the
IP. Conversely, the threat model of this work (Section II-D)
assumes that cheating verifiers have incentives to extract
information about the IPs before a financial transaction is
completed. In this context, Pythia offers a novel privacy-
preserving approach to such deadlocks, by enabling system
integrators to verify that 3PIP vendors possess an IP with
certain functional, performance, area, and power constraints.

Recent research directions have also focused on obfuscation
methods that aim to prevent IP theft of circuit designs, by
inserting additional gates into the circuit in order to hide its
implementation [6]. Likewise, watermarking [61] and finger-
printing [62] methods embed author signatures in the design to
deter IP theft, as they allow tracking the source of leakage in
case of piracy violations. While such techniques mitigate the
risk of IP theft, they come with important limitations: First,
these techniques only make it harder for the attackers but do
not guarantee that 3PIPs can not be leaked. Furthermore, all
the aforementioned techniques tamper with the IP design and,
more importantly, they assume that verification takes place
after the IP is outsourced to the system integrator. In contrast,
Pythia is designed for privacy and makes it impossible for such
designs to be leaked in the first place, as system integrators
never access the IP while verifying its properties. Notably, in
this work, we can prove both the functionality of a 3PIP, as
well as estimate important properties (area, performance, and
power) without altering the netlists in any way. To the best
of our knowledge, Pythia is the first framework that employs
ZKPs in the context of privacy-preserving IP verification,
which is an exciting research direction for integrated circuits.

VIII. CONCLUDING REMARKS

In this paper, we have proposed the first-of-its-kind Pythia
framework for privacy-preserving IP verification. Pythia fea-
tures a custom compiler that translates any circuit into a
specialized encoding that is then evaluated in zero-knowledge
using public test vectors; our method generates cryptographic
proofs to attest the faithful evaluation of test inputs on a
netlist, yet the netlist itself remains a black box for the verifier.
Security is guaranteed by Pythia’s back-end that leverages the

provably secure zk-STARK protocol. Our methodology also
supports different auxiliary modules that can further estimate
the area, performance, and power consumption of a netlist
in zero-knowledge. Moreover, Pythia leverages authenticated
hash digests to prove that the secret netlist was not altered
across different test vectors. Our methodology is comple-
mented by optimization techniques that reduce performance
overheads and memory requirements using register allocation
and bit-packing. Notably, Pythia can automatically split a
given netlist into multiple shares that can be evaluated in par-
allel. Finally, we have demonstrated Pythia’s versatility using
combinational and sequential circuits and have investigated the
impact of the netlist size on Pythia’s performance.

REFERENCES

[1] J. Gubbi et al., “Internet of Things (IoT): A vision, architectural
elements, and future directions,” Future generation computer systems,
vol. 29, no. 7, pp. 1645–1660, 2013.

[2] K. Mandula et al., “Mobile based home automation using Internet of
Things (IoT),” in ICCICCT. IEEE, 2015, pp. 340–343.

[3] M. Rostami et al., “Hardware security: Threat models and metrics,” in
ICCAD. IEEE/ACM, 2013, pp. 819–823.

[4] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[5] M. Tehranipoor and C. Wang, Introduction to hardware security and
trust. Springer Science & Business Media, 2011.

[6] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of
integrated circuits,” in DATE. ACM, 2008, pp. 1069–1074.

[7] R. Torrance and D. James, “The state-of-the-art in IC reverse engineer-
ing,” in CHES. Springer, 2009, pp. 363–381.

[8] E. Castillo et al., “IPP@HDL: Efficient Intellectual Property Protection
Scheme for IP Cores,” IEEE TVLSI, vol. 15, no. 5, pp. 578–591, 2007.

[9] P. Chauhan et al., “Verifying IP-core based system-on-chip designs,” in
ASIC/SOC. IEEE, 1999, pp. 27–31.

[10] A. Deshpande, “Verification of IP-Core based SoC’s,” in ISQED. IEEE,
2008, pp. 433–436.

[11] M. Stadler et al., “Functional verification of intellectual properties (IP):
a simulation-based solution for an application-specific instruction-set
processor,” in IEEE ITC, 1999, pp. 414–420.

[12] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in VTS. IEEE, 2012,
pp. 252–257.

[13] B. Keng and A. Veneris, “Path-Directed Abstraction and Refinement
for SAT-Based Design Debugging,” IEEE TCAD, vol. 32, no. 10, pp.
1609–1622, 2013.

[14] G. Moretti et al., “Your Core – My Problem? Integration and Verification
of IP,” in DAC. IEEE/ACM, 2001, pp. 170–171.

[15] C. Konstantinou, A. Keliris, and M. Maniatakos, “Privacy-preserving
functional IP verification utilizing fully homomorphic encryption,” in
DATE. EDAA, 2015, pp. 333–338.

[16] N. G. Tsoutsos and M. Maniatakos, “The HEROIC framework: En-
crypted computation without shared keys,” IEEE TCAD, vol. 34, no. 6,
pp. 875–888, 2015.

[17] C. Gouert and N. G. Tsoutsos, “ROMEO: Conversion and Evaluation of
HDL Designs in the Encrypted Domain,” in DAC. ACM/EDAC/IEEE,
2020, pp. 1–6.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[18] E. Ben-Sasson et al., “Scalable zero knowledge with no trusted setup,”
in CRYPTO. Springer, 2019, pp. 701–732.

[19] D. Mouris and N. G. Tsoutsos, “Zilch: A framework for deploying
transparent zero-knowledge proofs,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 3269–3284, 2021.

[20] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof-Systems,” Journal on computing, vol. 18, no. 1, pp.
186–208, 1989.

[21] B. Adida, “Helios: Web-based Open-Audit Voting.” in USENIX Security,
vol. 17, 2008, pp. 335–348.

[22] A. Kosba et al., “Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts,” in S&P. IEEE, 2016, pp. 839–
858.

[23] O. Goldreich and A. Kahan, “How to construct constant-round zero-
knowledge proof systems for NP,” Journal of Cryptology, vol. 9, no. 3,
pp. 167–189, 1996.

[24] B. Parno et al., “Pinocchio: Nearly practical verifiable computation,” in
S&P. IEEE, 2013, pp. 238–252.

[25] R. Gennaro et al., “Quadratic span programs and succinct NIZKs
without PCPs,” in EUROCRYPT. Springer, 2013, pp. 626–645.

[26] E. Ben-Sasson et al., “Fast reductions from RAMs to delegatable
succinct constraint satisfaction problems,” in ITCS. ACM, 2013, pp.
401–414.

[27] ——, “SNARKs for C: Verifying program executions succinctly and in
zero knowledge,” in CRYPTO. Springer, 2013, pp. 90–108.

[28] ——, “Succinct non-interactive zero knowledge for a von Neumann
architecture,” in USENIX Security, 2014, pp. 781–796.

[29] Y. Zhang et al., “vRAM: Faster verifiable RAM with program-
independent preprocessing,” in S&P. IEEE, 2018, pp. 908–925.

[30] M. Bellare and O. Goldreich, “On Defining Proofs of Knowledge,” in
CRYPTO. Springer, 1992, pp. 390–420.

[31] J. Groth, “On the size of pairing-based non-interactive arguments,” in
EUROCRYPT. Springer, 2016, pp. 305–326.

[32] E. Ben-Sasson et al., “Fast Reed-Solomon interactive oracle proofs of
proximity,” in ICALP. EATCS, 2018.

[33] A. Shamir, R. L. Rivest, and L. M. Adleman, “Mental poker,” in The
mathematical gardner. Springer, 1981, pp. 37–43.

[34] M. Naor, “Bit commitment using pseudorandomness,” Journal of Cryp-
tology, vol. 4, no. 2, pp. 151–158, 1991.

[35] M. Luby and C. Rackoff, “How to construct pseudo-random permu-
tations from pseudo-random functions,” in CRYPTO, vol. 85, 1985, p.
447.

[36] R. Beaulieu et al., “The SIMON and SPECK lightweight block ciphers,”
in DAC. ACM/EDAC/IEEE, 2015, pp. 1–6.

[37] V. Shoup, “Sequences of games: a tool for taming complexity in security
proofs.” Cryptology ePrint Archive, Report 2004/332, 2004.

[38] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 143–154,
1979.

[39] N. G. Tsoutsos and M. Maniatakos, “Efficient Detection for Malicious
and Random Errors in Additive Encrypted Computation,” IEEE Trans-
actions on Computers, vol. 67, no. 1, pp. 16–31, 2017.

[40] T. Krovetz, “Message authentication on 64-bit architectures,” in SAC.
Springer, 2006, pp. 327–341.

[41] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
and Hall/CRC, 2014.

[42] C. Wolf, J. Glaser, and J. Kepler, “Yosys - A Free Verilog Synthesis
Suite,” in Austrian Workshop on Microelectronics (Austrochip), 2013.

[43] F. J. Kurdahi and A. C. Parker, “PLEST: a program for area estimation
of VLSI integrated circuits,” in DAC. ACM/EDAC/IEEE, 1986, pp.
467–473.

[44] M. Nemani and F. N. Najm, “High-level area and power estimation for
VLSI circuits,” IEEE TCAD, vol. 18, no. 6, pp. 697–713, 1999.

[45] R. F. Sproull and I. E. Sutherland, “Logical effort: Designing for speed
on the back of an envelope,” IEEE Advanced Research in VLSI, vol. 9,
p. 219, 1991.

[46] P. A. Beerel and T. H.-Y. Meng, “Automatic gate-level synthesis of
speed-independent circuits,” in ICCAD. IEEE/ACM, 1992, pp. 581–
586.

[47] I. Ciofi et al., “Impact of Wire Geometry on Interconnect RC and Circuit
Delay,” IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2488–
2496, 2016.

[49] J. Monteiro et al., “Estimation of average switching activity in combi-
national logic circuits using symbolic simulation,” IEEE TCAD, vol. 16,
no. 1, pp. 121–127, 1997.

[48] A. Ghosh et al., “Estimation of average switching activity in combina-
tional and sequential circuits,” in DAC, vol. 29. ACM/EDAC/IEEE,
1992, pp. 253–269.

[50] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson Education India, 2015.

[51] F. Brglez, “A neural netlist of 10 combinational benchmark circuits,”
IEEE ISCAS: Special Session on ATPG and Fault Simulation, pp. 151–
158, 1985.

[52] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in ISCAS. IEEE, 1989, pp. 1929–1934.

[53] F. Corno, M. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Design Test of Computers, vol. 17, no. 3,
pp. 44–53, 2000.

[54] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing
analysis tool,” in ICCAD. IEEE, 2015, pp. 895–902.

[55] A. Chiesa et al., “Marlin: Preprocessing zkSNARKs with Universal and
Updatable SRS,” in Eurocrypt. Springer, 2020, pp. 738–768.

[56] J. Bootle et al., “Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting,” in Eurocrypt. Springer, 2016, pp.
327–357.

[57] R. S. Wahby et al., “Doubly-efficient zkSNARKs without trusted setup,”
in S&P. IEEE, 2018, pp. 926–943.

[58] B. Bünz et al., “Bulletproofs: Short proofs for confidential transactions
and more,” in S&P. IEEE, 2018, pp. 315–334.

[59] C. Kern and M. R. Greenstreet, “Formal verification in hardware design:
a survey,” ACM TODAES, vol. 4, no. 2, pp. 123–193, 1999.

[60] N. G. Tsoutsos, C. Konstantinou, and M. Maniatakos, “Advanced tech-
niques for designing stealthy hardware Trojans,” in DAC. IEEE/ACM,
2014, pp. 1–4.

[61] A. B. Kahng et al., “Watermarking techniques for intellectual property
protection,” in DAC. IEEE/ACM, 1998, pp. 776–781.

[62] A. E. Caldwell et al., “Effective iterative techniques for fingerprinting
design IP,” IEEE TCAD, vol. 23, no. 2, pp. 208–215, 2004.

Dimitris Mouris (S’19) received the B.Sc. (2016)
and M.Sc. (2018) degrees in computer science and
computer systems respectively from the National
and Kapodistrian University of Athens, Greece.
He is currently pursuing a Ph.D. degree in com-
puter engineering with the Electrical and Com-
puter Engineering department at the University
of Delaware, Newark, DE, USA. His research
interests include computer security, cryptography,
and privacy-enhancing technologies. He is also the
global challenge co-lead of the international Embed-

ded Security Challenge (ESC) competition that is held annually during the
Cyber Security Awareness Worldwide (CSAW) event.

Charles Gouert (S’20) received the B.Sc. degree
(2018) in electrical and computer engineering from
the University of Delaware, Newark, DE, USA. He
is currently pursuing a Ph.D. degree in computer
engineering with the Electrical and Computer Engi-
neering department at the University of Delaware,
Newark, DE, USA. His current research interests
include computer security, cryptography, and private
outsourcing. He is also the global challenge co-lead
of the international Embedded Security Challenge
(ESC) competition that is held annually during the

Cyber Security Awareness Worldwide (CSAW) event.

Nektarios G. Tsoutsos (S’13–M’19) received the
Ph.D. degree in computer science from New York
University and the M.Sc. degree in computer en-
gineering from Columbia University. He is cur-
rently an Assistant Professor with the Department
of Electrical and Computer Engineering, University
of Delaware. His research interests are in cyber-
security and applied cryptography, with a special
focus in hardware security, trustworthy computing,
and privacy outsourcing. He has authored multiple
articles in the IEEE Transactions and conference

proceedings, and serves in the program committee of several international
conferences. He is also the faculty organizer of the international Embedded
Security Challenge (ESC) competition that is held annually during the Cyber
Security Awareness Worldwide (CSAW) event.

	Introduction
	Cryptography Background
	Zero-Knowledge Proofs Primer
	How zk-STARK Proofs Work
	Lightweight Pseudorandom Functions with Extended Input
	Threat Model

	The Pythia framework
	Overview of Pythia
	Privacy-Preserving Functional Verification
	Library of ZK Modules
	Pythia back-end

	From IP Netlists to ZK-friendly Encoding
	RTL Synthesis
	Combinational Circuits
	Sequential Circuits

	Zero-Knowledge Circuit Evaluation

	Library of Modules
	Area Verification Module
	Performance Verification Module
	Power Verification Module

	Pythia's Optimizer
	Efficient Wire Placement Using Register Allocation
	Bit-Packing
	Execution Parallelism

	Experimental Results
	Experimental Setup
	Performance Evaluation
	Splitting Shares Trade-off
	Two levels of Parallelization
	Discussion of Experimental Results
	Bit-Packing

	Related Work
	Concluding Remarks
	References
	Biographies
	Dimitris Mouris
	Charles Gouert
	Nektarios G. Tsoutsos

