
Pythia: Intellectual Property Verification in
Zero-Knowledge

Dimitris Mouris and Nektarios Georgios Tsoutsos
Electrical and Computer Engineering, University of Delaware

E-mail: {jimouris, tsoutsos}@udel.edu

Abstract—The contemporary IC supply chain depends heavily
on third-party intellectual property (3PIP) that is integrated to in-
house designs. As the correctness of such 3PIPs should be verified
before integration, one important challenge for 3PIP vendors is
proving the functionality of their designs while protecting the
privacy of circuit implementations. In this work, we present
Pythia that employs zero-knowledge proofs to enable vendors
convince integrators about the functionality of a circuit without
disclosing its netlist. Pythia automatically encodes netlists into
zero knowledge-friendly format, evaluates them on different
inputs, and proves correctness of outputs. We evaluate Pythia
using the ISCAS’85 benchmark suite.

Index Terms—Hardware security, trustworthy hardware, in-
tellectual property verification, zero-knowledge proofs, IP theft

I. INTRODUCTION

In this new interconnected era of the Internet of Things
(IoT), System-on-Chip (SoC) have conquered the market due
to less power and area consumption, increased reliability and
functionality compared to multi-chip designs. IoT enables an
extensive set of applications such as transportation systems,
healthcare, home automation, and many more, the majority
of which utilize SoCs. SoCs combine the required electronic
circuits of various computer components onto a single, inte-
grated chip (IC). The contemporary IC supply chain, involves
designing some components in-house, procuring a variety of
Intellectual Property (IP) cores from third-party foundries and
integrating them together to generate the IC [1].

As the demand of IC rapidly grows, the number of third
party IP (3PIP) vendors is increasing as well. This increase
has attracted a variety of untrusted IP vendors and malicious
users trying to trick honest parties for financial gain [2].
At the same time, hardware 3PIP vendors make their IPs
reusable and provide design standards and guidelines so they
can be utilized by multiple design layouts to increase profit [3].
However, focusing more on IP functionality and performance
than security, renders IP piracy a significant threat since system
level analysis [4] and reverse engineering [5] become easier.

IP core verification is a crucial component of SoC design in
the modern IC business model. 3PIP vendors design circuits
with respect to some agreed-upon functional specifications,
provided by system integrators (i.e., IP consumers), and try
to prove the functionality of their designs while protecting
the privacy of circuit implementations. Achieving sufficient
verification and high testability are the major bottlenecks in
the IC supply chain; i.e., to confirm that the circuit complies

to the specified properties. Many related solutions have been
proposed such as application-specific instruction-set proces-
sors [6], SAT solvers [7], formal logic verification [8], simu-
lation [9] and homomorphic encryption [10] based methods.

In this paper, we utilize zero-knowledge proofs to address
the trust issues between 3PIP vendors and system integrators.
We propose the Pythia framework that enables IP consumers
verify that a potentially untrusted vendor possesses an IP
that satisfies some agreed-upon properties without having
access to it (i.e., gaining zero knowledge about the IP).
Pythia automatically encodes a netlist into a zero knowledge-
friendly format, evaluates it given test input vectors and
enables proving correctness of the output. Having as our back-
end the libSTARK library [11] that can be used to argue
about the integrity of a computation (i.e., creating proof that
a computation was executed correctly), Pythia implements a
novel circuit simulator as a zero-knowledge state machine.
Moreover, Pythia implements a special encoding to convert
input test vectors to a format compatible with our circuit
simulator, which allows evaluation of the Boolean circuit
operations defined in the 3PIP netlist to be carried out in zero
knowledge, without revealing the netlist itself. Specifically, the
3PIP netlist is treated as a private (secret) input to Pythia’s
circuit simulator, while the test vectors are treated as public
inputs; Pythia creates cryptographic proofs that the circuit
simulator has faithfully evaluated the secret netlist on the
public inputs and that the return output is correct. In this work,
our contributions can be summarized as follows:

• Simulator: Development of a novel circuit simulator as a
zero-knowledge state machine that can evaluate Boolean
circuits on any input test vector, without ever revealing
the netlist.

• Compiler: Automatic compilation of Boolean circuit
netlists into a serialized, zero knowledge-friendly format
that eliminates inter-dependencies between intermediate
gate inputs and upstream gate outputs.

• Optimizer: Internal state minimization for Pythia’s cir-
cuit simulator leveraging bit-packing and graph-coloring
techniques for optimal allocation of intermediate wire
values to the state vector.

• Parallelism: Pythia automatically divides our compiled
3PIP netlists into independent shares that can be simu-
lated in parallel, while cryptographically proving conti-
nuity between all consecutive shares.



Fig. 1. Overview of Pythia: (a) The 3PIP vendor (prover) possesses an IP described in a Hardware Description Language. (b) The prover synthesizes the
IP and generates a gate-level netlist. (c) The 3PIP vendor determines the evaluation order of the gates and minimizes the number of intermediate wire values
required to evaluate the netlist. (d) The prover transforms the IP into zero-knowledge friendly encoding for the state machine simulator. (e) The system
integrator (verifier) supplies a set of public inputs. (f) The 3PIP vendor evaluates the IP circuit and proves in zero-knowledge the computational integrity of
the evaluation through interaction with the verifier.

Roadmap: In Section II we offer a brief discussion on
zero-knowledge proofs, universal hashing, and our threat
model, while in Section III we present our zero-knowledge
IP verification methodology. Finally, Section IV discusses our
evaluations, followed by related work and our conclusions in
Sections V and VI, respectively.

II. PRELIMINARIES

A. Basics of Zero-Knowledge Proofs

A zero-knowledge proof is a cryptographic protocol be-
tween two parties; a prover and a verifier [12]. The prover’s
goals is to convince the verifier that she knows a correct secret
input w (known as a witness) to a publicly-known program P ,
so that the output of P on secret w and some additional public
input x is a fixed value y = P(x,w). As a simple example,
P can be a program that applies a hashing algorithm (e.g.,
SHA-256) on w and compares the resulting hash with x to
return true or false as follows:

P(x,w) := if H(w) = x return True else return False.

To convince the verifier, the prover executes P(x,w) locally
using inputs x,w and records the execution transcript as a
sequence of intermediate states on a special state machine
implementing P [13]. Since the transcript corresponds to the
execution of publicly-known program P , all state transitions
in the execution transcript must satisfy certain cryptographic
constraints that are expressed using low-degree polynomials,
which are eventually checked by the verifier [11]. By design,
the zero-knowledge protocol does not leak any information
about w beyond that fact that the verifier has faithfully
executed P(x,w) and the output is y (i.e., True or False).
Moreover, the protocol can guarantee that the verifier is able to
detect if the prover is cheating by falsely claiming knowledge
of the witness input (i.e., the prover cannot convince the
verifier if she does not actually know the correct w) [14].

Pythia generalizes the example above using a full circuit
simulator as the public program P: our simulator takes a secret
3PIP netlist as witness input w, together with a public input
test vector x, and evaluates that netlist on the test input. The
simulation output is a result vector y.

B. Lightweight Pseudorandom Functions with Extended Input

A pseudorandom function (PRF) F is a deterministic al-
gorithm that combines a secret key S with an input block
X and returns an output block Y that is computationally

indistinguishable from truly random bits [15]. In practice, one
common class of PRFs includes secure block ciphers, such as
Speck [16], which use a secret key to transform a plaintext
block into a ciphertext block. Even though PRFs have fixed
input block sizes, it is possible to extend their input length to
arbitrary sizes using a universal hash function (UHF). Indeed,
the PRF (UHF (·)) construction (i.e., universal hash and then
encrypt [17]) is also a secure PRF [18, Section 4].

Based on the Carter and Wegman blueprint, a UHF U
defined over ` input blocks (m1 to m`) and a secret key k
can be constructed as a polynomial of degree-` modulo a
prime number q that is evaluated at point k. In particular,
U(k,m1, . . . ,m`) =

∑`
1 mik

i mod q, with mi ∈ Zq , is a
lightweight UHF with a collision probability ε ≤ `/q [19].
Notably, U can be computed iteratively using Horner’s method,
and can be encrypted using the Speck block cipher to construct
a secure PRF with input extended over ` blocks.

C. Threat Model

In this work, we tackle the problem of mutual mistrust
between 3PIP vendors and system integrators using zero-
knowledge proofs. More specifically, our threat model involves
a vendor claiming that she possesses an IP, and an integrator
interested in buying that IP. Our model assumes a cheating
vendor that may have an incentive to deceive the integrator
and attempt to sell an IP that does not meet the agreed-upon
functionality; in this case, the buyer needs to test the IP using
multiple input vectors and check the correctness of the outputs.
Likewise, we assume a cheating buyer that may attempt to
obtain the IP before paying, so the vendor cannot disclose the
corresponding netlist until after payment is committed.

III. THE PYTHIA FRAMEWORK

A. Overview of our framework

We present Pythia, a framework for privacy-preserving
3PIP verification. Pythia enables vendors to convince system
integrators that they possess 3PIPs that meet some agreed-upon
functional specifications without revealing their designs (i.e.,
in zero-knowledge). Fig. 1 demonstrates the Pythia framework,
which is outlined by the following steps:

1) The 3PIP vendor (prover) synthesizes the circuit de-
scribed in a Hardware Description Language (HDL), such
as Verilog, and creates a gate-level netlist.

2) Consecutively, the prover determines the evaluation order
of the gates and minimizes the number of intermediate



wires required to evaluate the circuit leveraging Pythia’s
bit-packing and graph coloring techniques.

3) The 3PIP vendor transforms the IP into a zero knowledge-
friendly format that can be used by Pythia’s state machine
as witness input.

4) The IP user (verifier) provides a test vector for the netlist
that is supplied as public input to Pythia’s state machine.

5) The 3PIP vendor evaluates the private netlist with the
public test vector and computes a public output.

6) The two parties interact using Pythia and the 3PIP vendor
proves in zero-knowledge the correctness of the compu-
tation.

The following sections elaborate more on the various compo-
nents of our Pythia framework.

Pythia’s back-end: Pythia employs libSTARK [11] to con-
struct a custom state machine that evaluates logic circuits. In
more details, the programming interface of libSTARK enables
the development of assertions about computational integrity,
which are used to prove the correctness of the execution trace
and transitions of arbitrary state machines. The initial state of
Pythia’s machine is a vector of zeros and after each step of the
computation a new state vector is appended to the execution
trace; the latter can be envisioned as a table comprising a
sequence of state vectors that represent the computation. The
state machine can modify its state based on a broad range of
operations, including arithmetic and bitwise operations as well
as conditional decisions.Using its back-end, Pythia imposes
polynomial constraints to the execution trace and proves to
the verifier their satisfiability (e.g., generates a proof of correct
evaluation of the gate, while keeping the actual gate a secret).

B. From IP Netlists to Zero-Knowledge Simulation

IP Core Transformation: In our approach, we assume 3PIPs
are netlists described in the Electronic Design Interchange
Format (EDIF). Pythia enables automatic compilation of EDIF
netlists into a zero knowledge-friendly format to transform
the IP logic into a form that can be interpreted and utilized
by its back end. Pythia’s compiler parses the netlist and elimi-
nates inter-dependencies between intermediate gate inputs and
upstream gate outputs by creating a directed acyclic graph
(DAG). Using the DAG, Pythia determines the evaluation order
of the circuit’s gates by running a topological sort algorithm
and resolves all the dependencies in the netlist. Consecutively,
our compiler transforms any gates of the circuit that take more
than two inputs into a sequence of two-input gates. Finally,
Pythia assigns a gate identifier to each logic gate (i.e., AND,
OR, XOR, etc.) and writes the encoded IP to a file that can be
used as witness input in our zero-knowledge circuit simulator.

Circuit Simulator: The core of the Pythia framework is the
development of a circuit simulator as a zero-knowledge state
machine that can evaluate Boolean circuits on any input test
vector, without revealing the netlist. The state machine reads
a series of logic gates from the private input along with a
number of public binary inputs and evaluates their output.
For each gate that Pythia consumes from the private input,

Algorithm 1 State Machine for Circuit Simulation
Input: Public inputs, Private inputs

1: procedure EVALCIRCUIT
2: for each public input do Initialize StateV ector
3: H ← 0 . Keeps track of the PRF of the IP

4: for each private input do
5: Read gateID, in0, in1, out
6: H ← PRF (H, gateID, in0, in1, out)
7: if gateID = AND then out← in0 & in1

8: else if gateID = OR then out← in0 | in1

9: else if gateID = . . . then . . .
10: StateV ector ← Update(StateV ector, out)

11: return StateV ector, H

it reads two public inputs and depending on the gate type,
the state machine determines what operation to perform on
the two input values, computes the result and proves the
integrity of that computation. However, since many gates
rely on the outputs of preceding gates, after Pythia evaluates
all the gates that take constant binary inputs, the inputs for
intermediate gates have to be supplied from the outputs of the
already evaluated gates. As Pythia stores these outputs at pre-
determined indexes of the state vector, the private input should
encode the index information as well.

More specifically, after each gate identifier in the private
input, Pythia encodes three state vector indexes, two for the
gate input values and one for the output of the gate. Recall
that both the prover and the verifier have access to the test-
vectors and the state machine simulator, but only the former
knows the gates and the indexes that are being used to evaluate
them. With Pythia, the verifier never see the 3PIP netlist, yet
she can be convinced that the prover correctly executed the
simulator code with the public input-vector and generated the
public output.

To enable 3PIP verification, the system integrator has to
supply a variety of different input-vectors to ensure that the
3PIP satisfies the agreed-upon functionality. However, since
during zero-knowledge verification the system integrator does
not acquire any knowledge about the encoded 3PIP (private
input) used to generate the public output, she also needs to be
convinced the same 3PIP was used across different executions
using different test vectors. To address this requirement while
protecting the confidentiality of the 3PIP, Pythia employs a
PRF that generates authenticated digests from the 3PIP netlist
during evaluation. The choice of PRF is crucial, considering
the high overhead the prover will incur due to the increased
number of instructions to compute the PRF along with the
circuit simulation. Thus, we employ the lightweight PRF with
extended input discussed in Section II-B.

The functionality of Pythia’s circuit simulator is summa-
rized in Alg. 1. First, the state machine is initialized with the
verifier’s chosen public inputs (line 2). Then, our simulator
reads the gate identifier and three indexes (i.e., two inputs
and one output) and computes an integrity measurement using
the PRF (line 6). The simulator determines what operation to
perform on the inputs, evaluates the output, updates the state



Fig. 2. Adder evaluation: The numbers on the gates denote the evaluation
order, also depicted in the first column of the table (execution trace) on the
right-hand side. The green values represent which variable changed after the
evaluation of the gate denoted by the row number. The variables r0–r3 can be
interpreted as 4 separate or as one 4-bit block. The private tape that encodes
a part of the above circuit is depicted on the bottom.

vector and repeats the process for the next gate. Ultimately,
the simulator outputs the final state vector and the computed
PRF digest of the IP.

C. Pythia’s Optimizer

Assigning each intermediate wire to a different state-vector
index could blow up the state size required to verify even a
small circuit. Thus, Pythia adopts register allocation principles
using graph coloring from the compilers literature [20] to
utilize a smaller number of indexes in its state vector more
efficiently. During the IP transformation phase, the 3PIP
vendor performs index allocation in the state vector for the
input, output and all the intermediate wires of the netlist, which
significantly reduces the total number of required indexes.

In Fig. 2, we demonstrate how register allocation techniques
can reduce the number of indexes for an adder evaluation.
Initially, the circuit would require 8 total wires; 3 input, 2
output as well as 3 more for the intermediate results of gates 1,
2 and 3. Using our index allocation approach, we can evaluate
this circuit with just 4 wires, as shown in the execution trace
in the right-hand side of Fig. 2. The first row corresponds to
the initialization of the state vector using the public input, and
each subsequent row corresponds to the evaluation of the next
gate (in each row, we highlight the output of a gate in green).
The bottom of the figure shows a part of the transformed adder
circuit (i.e., the 3PIP witness); initially, the state machine reads
the XOR operation along with the two input variables (r0, r1),
evaluates the result, stores it to the output variable (r3), before
continuing to the next operation.

Bit-Packing: As IP circuits grow larger, the number of wires
holding intermediate values can increase exponentially, even
for state machines that apply register allocation techniques.
Even though Pythia’s state vector does not have a size limit,
the more indexes in the state vector, the longer the proving
time. To address this concern, and given the fact that we
only store binary values in the wires, Pythia implements a bit-
packing optimization that first organizes wires into blocks, and
each index of the state vector holds one block (the individual
bits within each block have a separate sub-index). Specifically,

Fig. 3. Chaining execution to enable parallel verification. Pythia divides
large executions into multiple shares and pre-computes the intermediate states
locally. The simulator computes the PRF digest of the machine state and
compares it with the digest provided in the public tape to verify its integrity.
Each share can be verified independently and in parallel.

our bit-packing scheme utilizes 64-bit blocks that hold 64
intermediate binary values at different sub-indexes within the
block, which significantly reduces the number of indexes in the
state vector. Notably, to enable this optimization, the witness
input should encode both state vector indexes and block sub-
indexes. Although Pythia’s state machine now uses slightly
more state transitions to read and write in the correct sub-
indexes of each block (e.g., shift operations to isolate the
correct bits), the overhead of utilizing bit-packing is negligible
compared to the cost of having to verify state vectors with
larger index sizes in the execution trace. With bit-packing, the
adder in Fig. 2 that normally requires a state vector holding
at least 4 variables, can now use a state vector with a single
4-bit block.

D. Execution Parallelism

The execution trace of each IP simulation has an initial
state of zeros and a final state that denotes the values on
the output wires of the netlist that was evaluated. Given an
execution trace of a netlist evaluation, we can break down
the problem proving the faithful execution of the whole trace
into the problem of proving the execution of two – or more –
smaller traces (dubbed shares) while also verifying a valid
transition between them to create a valid execution chain.
This is illustrated in Fig. 3. To convince the IP consumer
that the shares are decompositions of the original transcript,
while preserving the confidentiality of the intermediate state
vectors of Pythia’s simulator, we employ the lightweight PRF
discussed earlier to compute integrity measurements of the
state vectors. The prover shares these authenticated digests
with the verifier, but only the former knows the actual vectors
that produced that digest (the verifier selects Speck encryption
key). Finally, the system integrator can verify that the PRF
digest at the end of each share is the same that gets extended
at the beginning of the next share.

Even though we have broken down a long execution trace of
a netlist evaluation into shares that can be chained together to
compute the same result, we cannot directly exploit parallelism
since each share depends on the output (i.e., machine state)
of the previous one. To address this problem, Pythia allows
the 3PIP vendor to simulate the netlist locally (i.e., without
creating a proof), pre-calculate the correct state vector digests
and use them to initialize each share. Notably, the local exe-
cution overhead is negligible compared to the actual proving



Fig. 4. Memory/Efficiency per gate trade-off. Horizontal axis shows the
maximum number of gates per share that can be simulated in less than a
power of 2 state machine transitions.

time. Consecutively, the zero-knowledge IP verification can
take place in parallel since there are no more dependencies
between the shares; for soundness, the IP consumer needs to
verify that the actual digests computed in each share are the
ones initialized in the public tape of the next share.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, we evaluate Pythia using the ISCAS’85
benchmark suite. The benchmarks have been synthesized to
produce EDIF netlists using the Yosys Open SYnthesis Suite
for Verilog RTL synthesis [21]. Experimental results are
obtained on a m5.24xlarge AWS EC2 instance running with
two Intel Xeon Platinum 8175M processors at 2.5 GHz and
hyper-threading for a total of 96 virtual cores and 748 GB
RAM. The system is running Ubuntu 18.04 with the 4.15.0
Linux kernel, g++ 7.4.0 compiler and Python 3.6.8.

B. Performance Evaluation

Pythia’s back-end incurs different time and memory over-
heads depending the size of the execution trace. As the
execution traces become bigger, both the execution time and
the memory required for the prover are increasing. However,
any two traces with size less than a power of 2 take roughly
the same proving time and same memory. For example, the
time and memory overheads to prove a trace with 942 steps
are approximately the same as the ones for a trace with 1020
steps (since both are less than 210).

Splitting Shares Trade-off: In Fig. 4 we present the proving
time per gate for varying number of gates per share (left
vertical axis) as well as the memory usage for a variety of gates
per share (right vertical axis). Although the total proving time
is increasing as the execution traces become larger, the more
gates we verify in a single trace, the less the proving time per
gate. This result indicates that the fastest prover timings can be
achieved by creating as big shares as possible. However, since
the required memory (green squares in Fig. 4) scales linearly
as the execution trace increases, it becomes impractical to
verify more than 650 gates per share. Thus, the fastest proving
time is highly dependable to the number of shares that we are
able to prove in parallel.

Optimal Parallelization: Taking into consideration the results
of Fig. 4, we study how we can exploit parallelism. In order
to verify 96 shares in parallel, each share cannot contain more

Fig. 5. Time measurements for verifying 1 and 96 shares with different
number of parallel threads per share.

Fig. 6. Pythia’s experimental results for the ISCAS-85 benchmark suite.

than 9 gates, as the memory required by the prover would
increase to impractical levels. The blue triangles in Fig. 5 show
the proving time for 1 share that contains 9 gates with different
number of cores. Doubling the number of processors almost
halves the execution time, but, as we reach to 96 cores, the
trend follows Amdahl’s law and the ideal 2x speedup starts
diminishing. This is an indicator that we should not allocate
too many cores on a single execution and that we should
distribute the cores to verify more shares in parallel. The green
squares in Fig. 5 show how our protocol scales for 96 shares.
On one extreme, using 1 core per share we can verify all 96
shares in parallel, while on the other extreme we can use all
96 cores to verify 1 share at a time and repeat this 96 times.
As we observe from our experiments, using 8 cores per share
and verifying 12 shares in parallel 8 times (to verify the total
96 shares) achieves the fastest proving time.

Experimental Timings: We evaluate Pythia using the IS-
CAS’85 benchmark suite with random input test-vectors.
Although different input patterns trigger different gates to be
simulated, the total cost for each benchmark is approximately
the same. Fig. 6 illustrates our performance evaluations for
a series of ISCAS benchmarks divided to 9 gates per share
and verifying each share with 8 parallel cores. Both prover
and verifier timings are highly dependent on the number of
execution steps, and because each share consists of 9 exactly
gates, the time to prove one share is constant. Thus, the
primary factor that affects performance is the total number
of shares in each benchmark. Notably, after Pythia transforms
all gates with more than two inputs into a series of gates with
two inputs, c5315 has the most gates compared to the other
ISCAS’85 benchmarks, and thus the higher prover and verifier
timings. As we observe, verification time in Pythia is poly-
logarithmic (polylog(T )) to the number of execution steps T,
while prover time is quasi-linear in T (T ·polylog(T )). Finally,
the time for the local prover phase to generate the PRF digests



TABLE I
STATE VECTOR MINIMIZATION AFTER APPLYING GRAPH-COLORING AND

BIT-PACKING TECHNIQUES

Benchmark c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

Wires 17 350 287 643 1047 1468 1899 2399 3632 2954 2949
Vector Size 5 39 48 87 72 189 242 322 569 63 357
64-bit Blocks 1 1 1 2 2 3 4 6 9 1 6

and enable parallel verification is negligible and is not shown
in Fig. 6.

Bit-Packing: Table I summarizes how Pythia’s register allo-
cation and bit-packing techniques reduce the required number
of intermediate wires for the ISCAS’85 benchmarks. Recall
that all wires (input, intermediate and output) require unique
indexes in the state vector to store their values. Some of the
benchmarks have over one thousand wires, rendering it com-
putationally expensive to hold them all in different offsets at
the same time. Using graph coloring for register allocation, we
are able to significantly reduce the required number of wires
(Table I, third row), yet some of the benchmarks still incur
increased overheads. By employing our bit-packing scheme,
however, we are able to evaluate all ISCAS’85 benchmarks
with no more than 9 64-bit blocks (Table I, last row).

V. RELATED WORK

In [10], Konstantinou et al. proposed a transformation of
3PIP designs that leverages homomorphic encryption and
employs encrypted input vectors. Although this approach
allows third parties to perform IP verification without having
access to the unencrypted vectors, the netlist designs can be
leaked since homomorphic operations does not hide the type
of operation (only the data). Other methods leverage formal
logic verification [8], [22] to prove to system integrators
that IPs satisfy agreed-upon properties and are not subject
to hardware attacks, such as hardware Trojans [23]. These
methods, however, focus on efficient verification by the system
integrators and do not consider that the verifiers may have
incentives to obtain the IP before paying, thus do not try
to protect it. Conversely, Pythia’s goal is to enable system
integrators verify that 3PIP vendors possess an IP without
having access to it (i.e., protecting the privacy of the IP).

Different approaches against IP theft include obfuscation
(by inserting additional gates into the design to hide the
implementation) [2], watermarking (by embedding a signature
in the design) [24], and fingerprinting (by embedding the
buyer’s signature to track the source of piracy) [25]. However,
all of the aforementioned techniques tamper with the IP
design and consider that verification takes place after the IP is
outsourced to the integrator. Conversely, Pythia does not alter
the circuit implementation and proves the functionality of the
IP design while protecting its privacy.

VI. CONCLUDING REMARKS

In this paper, we present Pythia, a novel framework for
privacy-preserving 3PIP verification. In our methodology, we
transform 3PIP netlists into a zero knowledge-friendly format
that can be used by Pythia’s state machine to evaluate circuits.

Pythia’s back-end utilizes libSTARK to attest computational
integrity of 3PIP circuit evaluation, proving knowledge of the
IP to a system integrator without disclosing the netlist. To
minimize the computational cost of zero-knowledge proofs,
Pythia implements various optimizations to reduce the storage
requirements for intermediate wires and exploit parallelism. In
our experiments, we verify all ISCAS’85 benchmarks using at
most 9 64-bit blocks for state storage, and efficiently utilize
96 cores to parallelize verification.

REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of
integrated circuits,” in DATE. ACM, 2008, pp. 1069–1074.

[3] M. Tehranipoor and C. Wang, Introduction to hardware security and
trust. Springer Science & Business Media, 2011.

[4] R. Torrance and D. James, “The state-of-the-art in IC reverse engineer-
ing,” in CHES. Springer, 2009, pp. 363–381.

[5] E. Castillo et al., “IPP@HDL: Efficient Intellectual Property Protection
Scheme for IP Cores,” IEEE TVLSI, vol. 15, no. 5, pp. 578–591, 2007.

[6] M. Stadler et al., “Functional verification of intellectual properties (IP):
a simulation-based solution for an application-specific instruction-set
processor,” in IEEE ITC, 1999, pp. 414–420.

[7] B. Keng and A. Veneris, “Path-Directed Abstraction and Refinement
for SAT-Based Design Debugging,” IEEE TCAD, vol. 32, no. 10, pp.
1609–1622, 2013.

[8] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in VLSI Test Symposium
(VTS). IEEE, 2012, pp. 252–257.

[9] G. Moretti et al., “Your Core – My Problem? Integration and Verification
of IP,” in DAC. IEEE/ACM, 2001, pp. 170–171.

[10] C. Konstantinou, A. Keliris, and M. Maniatakos, “Privacy-preserving
functional IP verification utilizing fully homomorphic encryption,” in
DATE. EDAA, 2015, pp. 333–338.

[11] E. Ben-Sasson et al., “Scalable zero knowledge with no trusted setup,”
in Advances in Cryptology – CRYPTO. Springer, 2019, pp. 701–732.

[12] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof-Systems,” Journal on computing, vol. 18, no. 1, pp.
186–208, 1989.

[13] E. Ben-Sasson et al., “SNARKs for C: Verifying program executions
succinctly and in zero knowledge,” in Advances in Cryptology –
CRYPTO. Springer, 2013, pp. 90–108.

[14] M. Bellare and O. Goldreich, “On Defining Proofs of Knowledge,” in
Advances in Cryptology – CRYPTO. Springer, 1992, pp. 390–420.

[15] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
and Hall/CRC, 2014.

[16] R. Beaulieu et al., “The SIMON and SPECK lightweight block ciphers,”
in DAC. IEEE/ACM, 2015, pp. 1–6.

[17] M. N. Wegman and J. L. Carter, “New hash functions and their use
in authentication and set equality,” Journal of computer and system
sciences, vol. 22, no. 3, pp. 265–279, 1981.

[18] V. Shoup, “Sequences of games: a tool for taming complexity in security
proofs.” Cryptology ePrint Archive, Report 2004/332, 2004.

[19] T. Krovetz, “Message authentication on 64-bit architectures,” in Selected
Areas in Cryptography (SAC). Springer, 2006, pp. 327–341.

[20] G. J. Chaitin, “Register allocation & spilling via graph coloring,” in
Sigplan Notices, vol. 17, no. 6. ACM, 1982, pp. 98–105.

[21] C. Wolf, J. Glaser, and J. Kepler, “Yosys - A Free Verilog Synthesis
Suite,” in Austrian Workshop on Microelectronics (Austrochip), 2013.

[22] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE TIFS, vol. 7,
no. 1, pp. 25–40, 2011.

[23] N. G. Tsoutsos, C. Konstantinou, and M. Maniatakos, “Advanced tech-
niques for designing stealthy hardware Trojans,” in DAC. IEEE/ACM,
2014, pp. 1–4.

[24] A. B. Kahng et al., “Watermarking techniques for intellectual property
protection,” in DAC. IEEE/ACM, 1998, pp. 776–781.

[25] A. E. Caldwell et al., “Effective iterative techniques for fingerprinting
design IP,” IEEE TCAD, vol. 23, no. 2, pp. 208–215, 2004.


