
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Received June 30, 2020, Date of publication July 28, 2020, date of current version July 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020

Peak your Frequency: Advanced Search
of 3D CAD Files in the Fourier Domain
DIMITRIS MOURIS1, (Student Member, IEEE), CHARLES GOUERT1, (Student Member, IEEE),
NIKHIL GUPTA2, (Member, IEEE) AND NEKTARIOS GEORGIOS TSOUTSOS1, (Member, IEEE)
1Electrical & Computer Engineering Department, University of Delaware, Newark, DE 19716 USA (e-mail: {jimouris, cgouert, tsoutsos}@udel.edu)
2Center for Cybersecurity, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA (e-mail: ngupta@nyu.edu)

Corresponding author: Nektarios G. Tsoutsos (e-mail: tsoutsos@udel.edu).

“This article is based upon work supported by the National Science Foundation under Grants No. 1931916 and 1932264. Any opinions,
findings, and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of
NSF.”

ABSTRACT An ever-increasing number of industries are adopting additive manufacturing (AM), also
known as 3D printing, to their production lifecycles for manufacturing parts. A computer aided design
(CAD) model is used to manufacture the part. The capability for efficient search and retrieval of the CAD
models from the database has become an essential need for designers and users. However, traditional search
techniques perform poorly in the context of searching CAD designs. In this paper, we propose Fourier
Fingerprint Search (FFS), a retrieval framework for 3D models that deduces and leverages critical shape
characteristics for search. FFS introduces a novel search methodology that incorporates these characteristics
and uses two advanced matching techniques that operate at different granularities and take into account
unique patterns associated with each design. In addition, FFS supports both exact and partial matching in
order to provide helpful and robust search results for any scenario. We investigate a diverse set of features
and enhancements for search that allows for high adaptability in all situations, such as dividing shapes
into smaller parts, surface interpolation, and two different types of rotation. We evaluate FFS using the
FabWave CAD dataset with approximately 3000 manufacturing models with different configurations. Our
experimental results demonstrate the efficiency and high accuracy of our approach for both exact and partial
matching, rendering FFS a powerful framework for CAD model search.

INDEX TERMS Additive manufacturing, CAD modeling, CAD search, design reuse, exact retrieval, partial
retrieval, shape matching, shape retrieval, 3D printing, 3D retrieval, 3D search

I. INTRODUCTION

ADDITIVE manufacturing (AM), or 3D printing, has
been adopted by a variety of industries including man-

ufacturing, automotive, aerospace, and medical [1]–[3]. AM
is considered the next industrial revolution [4] allowing parts
to be developed and tested digitally and the final optimized
computer aided design (CAD) model is manufactured on
a 3D printer with minimum human skill involved. Rapid
adoption and expansion of AM in industry is leading to the
number of three-dimensional CAD models available online
to grow exponentially.

Modern medicine has seen widespread adoption of AM
products such as prosthetics, implants, and surgical tools [5].
In addition, the automotive industry is also employing AM
techniques to create fixtures and molds [6]. It is clear that
AM will continue to play a large role in the advancement
of product design and manufacturing technology in the near

future. Many of these industrial designs such as automotive
systems include assemblies of thousands of parts that go
through several iterations of design evolution. Hence, it is im-
perative for these industries to have the ability to effectively
and efficiently search part design libraries and databases to
retrieve the existing CAD models [7].

Unfortunately, existing search techniques are ill-suited
when applied to 3D CAD models. The traditional text-based
information retrieval that search engines use has very limited
functionality with CAD models as this restricts the search
for keywords in filenames, captions, or context. This type of
search only considers file metadata and not the contents of
the files themselves, in this case the physical characteristics
of the 3D models. For this reason, many works have ex-
plored more sophisticated techniques to search for 3D parts.
Researchers have incorporated techniques that derive unique

VOLUME 4, 2020 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

information from 3D objects such as spherical harmonics [8],
or a combination of Fourier descriptors and Zernike moments
that are derived from transforms over disks and spheres to
represent properties of 3D objects [9]. Other works have
proposed using clustering techniques to group similar shapes
together [10] as well as geometric approximation techniques,
such as representing a model as a set of cubes [11]. In
an interesting direction that is orthogonal to search, other
efforts related to AM have focused on protecting 3D design
intellectual property against counterfeiting [12]–[15].

To enable design reuse, partial retrieval is essential [16].
Partial retrieval returns matches that are similar in some way
to the queried model, such as incorporation of similar or iden-
tical components. As an example, consider an automotive
corporation that has a database of 3D models of car rims
and the corporation wants to find out which existing rims
look similar to a new rim design. Exact matching will not
return any results, as the new rim design is very different
from all existing ones. With partial matching, by querying
the database with a 3D model of the targeted component, the
database should return a list of rims that share similarities
with the new rim design.

One of the major challenges with searching over the 3D
models themselves, as opposed to solely the metadata, is how
to derive important characteristics from the models to allow
for a robust search mechanism that encompasses both exact
and partial matching. To solve this problem, we propose us-
ing the Fast Fourier Transform (FFT) [17] to convert models
to the frequency domain1 and deduce peak frequencies. We
can use this peak information, as well as distances between
peaks, to create a unique identifier, or “fingerprint”, for each
object. The use of fingerprints also saves a great deal of space
in database storage as the only information about a design
that needs to be saved for search capabilities is its unique
fingerprint. Our contributions are summarized as follows:

• Querying: An enhanced search methodology that in-
corporates important design features and uses advanced
matching techniques that take into account unique pat-
terns associated with each object. Notably, our frame-
work supports both exact and partial matching, pre-
senting results with identical as well as similar shape
characteristics derived from the Fourier domain.

• Customized search: We investigate a variety of differ-
ent modes and enhancements for search, such as shape
slicing and interpolation, which offers high adaptability
to real-life scenarios.

• Advanced features: We analyze two different forms of
rotation and transformation to improve matching of 3D
CAD models at different angles and positions. Likewise,
we evaluate an approach that utilizes 3D FFT to enhance
the accuracy of search.

Roadmap: In Section II we discuss preliminaries and present
an overview of the 3D file formats that our framework

1In this work, we use the terms “Fourier domain” and “frequency domain”
interchangeably.

(a) (b) (c) (d)

FIGURE 1: An STL approximation of a sphere composed of
triangular planes with different resolution settings: (a) original
CAD model, (b) fine resolution, (c) semi-fine resolution, and
(d) coarse resolution.

interfaces with, as well as efficient frequency domain (audio
format) search techniques that inspired this work. Section
III outlines the fundamental concepts used in the proposed
framework, while Section IV elaborates on implementation
details and various enhancements. In Section V we present
our experimental results and analysis, while Section VI dis-
cusses prior research efforts. Lastly, Section VII discusses
our concluding remarks.

II. PRELIMINARIES

A. 3D CAD FILE FORMATS

STereoLithography, Standard Triangle Language, or Stan-
dard Tessellation Language (STL) is one of the most common
file format in AM and CAD systems. This file format de-
scribes the raw surface of a model broken down logically into
a series of small triangles (facets). Although it is not possible
to use facets to perfectly represent curved surfaces, increas-
ing the number of triangles increases the accuracy. Thus,
the same model can be represented with different resolution
settings that can affect the shape of the converted object.
For instance, in Fig. 1 three spheres of different resolutions
are depicted along with the original CAD model: Fig. 1 (b)
has higher resolution and thus the STL file comprises more
triangles leading to a representation closest to the appearance
of the sphere. However, the higher STL resolution also results
in larger files compared to Fig. 1 (c) and (d). In addition,
STL files come in two flavors: binary and ASCII. Because
binary STL files are more compact, they are more widely
used than their ASCII counterparts. Lastly, the STL format
is open source and well documented.

Alternative CAD file formats include Standard for the
Exchange of Product Data (STEP) and Initial Graphics Ex-
change Specification (IGES), which are both widely used for
digital exchange of information among 3D CAD systems.
Both STEP and IGES are ASCII structured, rendering them
easy to read but not optimal in terms of storage requirements.
At the same time, there exist various other formats that are
used by CAD software, yet most of them use a proprietary
structure. Thus, for this work, we focus on the STL file
format considering that it is universal and all 3D printers and
slicers can read it. We remark that conversion from STEP and
other file formats to STL is straightforward using automated
tools.

2 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

FIGURE 2: Time-frequency spectrogram: darker color refers
to higher magnitudes. Audio recognition is possible by finding
a set of peak frequencies with the highest magnitudes along
with their corresponding timing offsets. For each identified
peak in the set (represented by the circled point), the dis-
tances to a subset of other peaks are computed and hash
digests are generated for each peak pair.

B. AUDIO RECOGNITION USING SPECTROGRAMS
Recognition and search in audio samples has been made
possible by using a spectrogram of the sample [18]. A spec-
trogram represents the signal amplitude over frequency and
time. In order to get the frequencies from an audio sample
and generate its spectrogram, a Fourier transformation is
necessary.

Given a spectrogram of the sample, audio recognition
algorithms [19] find time-frequency indices that have high
amplitude (peaks), and filter out the remaining points. The
list of peaks is also referred to as a “constellation”, since the
points often resemble a star field. Different audio recognition
algorithms treat the constellation differently, however, the
main theme is to generate an identifier of the audio sample
using a combination of the frequency-time pairs. One possi-
ble approach to create an identifier of the sample is to hash
the frequencies of pairs of amplitude peaks along with their
timing offsets on the spectrogram, as we illustrate in Fig. 2.
The set of the generated hashes can represent the unique
identifier of the frequency-domain sample.

III. FOURIER FINGERPRINT SEARCH (FFS)
Motivated by the idea of searching in the audio domain,
we propose a novel framework for 3D CAD model search,
dubbed Fourier Fingerprint Search (FFS), that enables re-
trieval based on both exact and partial shape matching. FFS
comprises two main phases, the offline database population
and the online search/query. Both phases follow a similar
process in order to generate the identifier, referred to as
fingerprint, of a CAD file. A fingerprint is defined as a set
of hash digests, which in this work we call signatures, and
uniquely describes a 3D model. Moreover, it is essential
for FFS that the addition of thousands of CAD files in the
database should not decrease the probability of finding a

correct match. Thus, the fingerprint should be robust and
uniquely represent the 3D models. The organization of our
framework is depicted in Fig. 3 and described in more detail
by the following steps.

A. SCALE, SLICE, AND PROJECT CAD MODEL

The first step in our approach entails mapping the 3D points
from a given CAD model into a 3D grid representation within
FFS, reducing the 3D grid into a sequence of projections on
2D grids and then computing a number of hash digests that
act as unique signatures for the initial 3D object. Towards
that end, we start by scaling the absolute dimensions of all
3D points in the our CAD model to match the (user-defined)
dimensions of our 3D grid. This gives the user the freedom
to adjust the search capability for any application. Smaller
grids result in a larger number of approximate matches and
larger grids result in a few very close matches. Moreover, FFS
stores the applied scaling factor, which can help prioritize
matching results of similar scale.

After scaling, FFS logically divides the populated 3D grid
into N 3D slices across a selected axis of orientation. Each
slice corresponds to a part of the CAD model, so the union
of all N slices in the correct order represents the original
design. The intuition for defining this sequence of 3D slices
arises from the need to introduce the notion of continuity and
sequence in a 3D model, similar to what time represents for
an audio sample.

Next, FFS projects the three-dimensional points of each
3D slice onto N different 2D grids, so that the original
3D object is ultimately transformed into a sequence of N
logically consecutive and parallel 2D projections across a
given axis of orientation. Both the slicing and the projection
operations are repeated for all axes of the 3D model (i.e.,
X , Y , and Z) so that the generated 2D grids across different
orientations provide a more comprehensive description of
the given model. Fig. 3(b) shows an example of slicing a
CAD model into three 3D grids along the vertical axis, while
Fig. 3(c) represents the projections onto three 2D grids.

B. DETECT PEAKS

One crucial step of the FFS framework is the peak detection
operation, which affects all of the succeeding steps. We start
by applying the 2D FFT algorithm in each 2D grid generated
by the “scale, slice and project” step discussed in the previous
section and we get the Fourier-domain representation of
each 2D grid. We remark that the slicing and 2D projection
technique avoids executing an FFT over the entire 3D object,
which can be computationally expensive. We observe that
each 2D FFT output is a 2D array of frequency domain
magnitude values that is indexed by a pair of frequencies; to
remove possible ambiguity, we will be referring to these 2D
arrays as 2D Fourier Domain Arrays (2D-FDAs). Moreover,
since we previously generated N slices for each of the three
axes of the 3D model, after applying the FFT on the 2D grids,
we end up with 3 × N 2D-FDAs; these 2D-FDAs define

VOLUME 4, 2020 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

FIGURE 3: Overview of our approach: (a) Given an STL file, (b) FFS divides the STL file in a configurable number of slices
for all X, Y , and Z axes. (c) Our framework then projects each 3D slice onto a two-dimensional binary grid. The total number
of grids for each axis is equal to the predetermined number of slices. (d) The next step is to compute the 2D FFT for each grid
and (e) extract the magnitude peaks. (f) For each peak and its neighbors, FFS computes numerous hash digests that form the
fingerprint of the STL file. (g) Finally, the sets of all hashes for all the axes are stored in the database.

the Fourier representation of the original CAD model across
three different orientations.

Consecutively, for each generated 2D-FDA, FFS detects
the coordinates (i.e., 2D-FDA indices) of the magnitude
peaks using a local maximum filter [20]. The filtering result
is a Boolean mask of the peaks: True is assigned to a mag-
nitude value that is the neighborhood maximum, and False
is assigned otherwise. Our framework applies the Boolean
mask to each 2D-FDA and obtains a set with the magnitudes
of the peaks along with their coordinates in the frequency
domain (i.e., a peak is defined as a 3-tuple comprising a pair
of frequencies and the corresponding magnitude). Given the
set of peaks for each 2D-FDA, it is possible to filter them
further with respect to their absolute magnitudes using a
sub-sampling method and only keep the P with the highest
magnitudes. The value of P is configurable in FFS and
introduces a trade-off between computation time and storage
size, as it affects the number of generated signatures.

C. GENERATE SIGNATURES
In order to uniquely represent a 3D CAD file, we introduced
the notion of a fingerprint, which comprises a set of intri-
cately chosen hashes of the corresponding 3D object. In FFS,
each such signature is defined as a hash digest over a pair of
magnitude peaks drawn from either the same or adjacent 2D-
FDAs. In each such pair, the first peak acts as an “anchor” and
the second peak acts as a “target”. This is another essential
step of FFS, since this collection of signatures should be
robust and unique for each different CAD design in order
to avoid collisions and false positives. Likewise, we also re-
quire support for partial matching using the same fingerprint,
which entails that the signature generation algorithm should
allow for small shifting of the peak points.

One straightforward approach would be to take the Carte-
sian product of all of the peaks from all 2D-FDAs and
generate one hash digest for each possible pair. This approach
will result in a very large number of signatures, yet it may
increase accuracy during exact matching. Nevertheless, this
will significantly restrict partial matching: for example, a
signature of a pair of peaks where the first peak is drawn
from the first 2D-FDA and the second peak is drawn from
the last 2D-FDA will be too specific and cause overfitting.
In effect, although our goal is to maintain the association

between consecutive 3D slices in the Fourier domain, we
should avoid associating all possible peaks at the same time
(i.e., avoid computing a signature with two peaks from non-
adjacent 3D slices).

To avoid the pitfalls of the straightforward approach above,
instead FFS performs the following: (a) iterates over the
set of peaks detected during the peak detection step (Sec-
tion III-B), (b) selects “anchor” peaks from the set, and (c)
generates a defined number of signatures for each such an-
chor using a set of “target” peaks from adjacent downstream
2D-FDAs. The number of signatures corresponding to each
anchor peak is referred to as the fan-out of that peak, and
FFS allows configuring this parameter. An illustration of
this approach is shown in Fig. 3(f): for the selected anchor
peak, FFS selects 5 target peaks from adjacent 2D-FDAs
(i.e., fan-out of the anchor) and generates one signature for
each (anchor, target) combination. The larger the fan-out
parameter, the smaller the flexibility for partial matching,
and the more space requirements to store the corresponding
fingerprint in the database. Conversely, if the number of
generated signatures for each anchor peak (i.e., the fan-
out) is too small, the CAD model fingerprint may not be
sufficiently unique, since not having enough hashes increases
the probability of collisions among different fingerprints.2

Thus, it is important to properly tune the fan-out parameter
to maximize accuracy.

In more detail, each FFS signature is a cryptographic hash
digest over the two frequency-domain coordinates of the
anchor peak and the two frequency-domain coordinates of
the corresponding target (i.e., a hash of the array indices
corresponding to each peak within its 2D-FDA). To introduce
the notion of sequence and further reduce the probability of
signature collisions, the input of each aforementioned hash
digest further incorporates a “distance measure” between (a)
the 2D-FDA of the anchor peak and (b) the downstream 2D-
FDA of each target peak. In this case, for a given CAD model
that has been sliced into a sequence of N slices that are
subsequently projected onto 2D grids, we define the distance
between two 2D-FDAs as the offset difference between the

2Note, here fingerprint collisions refer to having two 3D objects identified
with the same set of hash digests, and is different from potential collisions
in the hash function itself. In FFS each hash digest is computed using the
SHA-1 hash function.

4 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

corresponding 2D grids with respect to the slicing axis (X ,
Y or Z). For example, when FFS is slicing a 3D object along
the Z axis to generate a sequence of N 2D grid projections
perpendicular to Z, the offset difference between the i-th 2D
grid and the j-th 2D grid is d = |j − i|, and this is also
the “distance measure” between the two corresponding 2D-
FDAs for that axis. Moreover, since the potential symmetry
in a given CAD model may cause collisions between the
signatures generated for different axes, FFS also incorporates
an axis identifier as an input to each hash digest, which
further minimizes the probability of such collisions.

At the end of this step, FFS generates a single fingerprint
for the target 3D model, which is organized as a graph
over all signatures from all anchors. Then, all hashes that
comprise this fingerprint are either stored in a database,
when FFS is in its training phase, or are queried against the
already-populated database to find potential matches during
the search phase.

D. FINGERPRINT SEARCH TECHNIQUES

In this section we propose two different techniques that
employ the fingerprint of a CAD file to identify the top
K most similar matches. To perform a query against an
already populated database, we start with a candidate CAD
file that is the query input. First, FFS performs on-the-fly
the fingerprinting step (discussed in subsection III-C) using
the input query, and generates all corresponding signature
hashes across the three axes of the 3D model. Then, FFS
uses the computed fingerprint of the input file to search in
the database for all similar fingerprints. Since a signature
in the database may have been generated by more than one
CAD file during the learning phase, for each signature of the
query file we actively track every possible matching file in
the database that has the same signature in its fingerprint. As
soon as the database is searched using all possible signatures
of the query file, we filter the results and return the top K
most similar files to the input query. FFS ranks each result
using its Fingerprint Efficiency Index (FEI) score, which is
our proposed similarity confidence metric computed based
on the percentage of matched hashes; FEI is further discussed
in Section V-C along with our experimental results.

1) Matching Neighborhoods

Our first methodology is motivated by pattern matching tech-
niques and is based on subgraphs of all signatures associated
with the same anchor. Towards that end, we propose the
notion of matching neighborhoods, where our search takes
into account patterns of signatures that encode snippets of
frequency domain information of each 3D model. In this
case, we define a “neighborhood” as the collection of sig-
natures that arise from the same anchor point, so that a match
between neighborhoods would be equivalent to a pattern
match in the Fourier domain representation of 3D models.
We remark that the size of each neighborhood is constant and
equal to the fan-out parameter introduced in Section III-C.

To implement the proposed neighborhoods matching tech-
nique, FFS generates each signature while also keeping track
of the anchor point associated with it. During the learning
phase for each CAD model, our database is populated with
tuples that encode the hash of each anchor point’s coordi-
nates, along with the list of signatures corresponding to the
neighborhood defined by that anchor point. Then, during the
search phase, FFS queries its database and computes a sorted
list of CAD files whose neighborhoods are the closest match
to those of the input query. Specifically, we consider that
two neighborhoods are matching when they both contain at
least minsig identical signatures, where minsig is a user-
configurable threshold parameter. The latter allows tuning
the degree of similarity between two neighborhoods, which
affects the flexibility for partial matching: For instance, if
minsig is maximum (i.e., equals the neighborhood size), FFS
is tuned for limited flexibility towards partial matching as it
will attempt to match all the signatures in each neighborhood.
Conversely, having a smaller minsig value (e.g., 2) would re-
sult in less strict matching, which allows retrieval of similar-
looking 3D shapes (i.e., partial matches).

2) Fine-grained Matching
Our second methodology implements a more fine-grained ap-
proach by matching the signatures from the input query with
the existing signatures from different CAD models in the
database. We refer to this technique as fine-grained matching
since its goal is to prioritize individual shape characteristics
over bigger – yet harder to match – patterns. When FFS
uses the fine-grained approach, it computes the total number
of signatures matched against each existing CAD model in
the database that has at least one match. These results are
then sorted in descending order so that CAD files with the
highest percentage of signature matches against the input
query are moved to the top of the list. Finally, FFS returns
the top K CAD files most similar to the query and also
reports the similarity confidence (FEI index) as a fraction of
the signatures matched divided by the total number of query
signatures.

IV. ADVANCED MATCHING TECHNIQUES
In this section, we propose a variety of techniques that en-
hance the accuracy of our 3D shape recognition framework.
First, we outline two methods of rotation in order to consider
objects from a variety of angles to get a more complete
and unique internal representation of 3D models. Second,
we introduce a technique to increase the search accuracy
of both the neighborhoods and fine-grained techniques by
upscaling the resolution of model representations without
affecting the CAD files themselves. Third, we implement
our search algorithms using high-order Fourier domain rep-
resentations for our shapes. The aforementioned techniques
can be combined together or work as stand-alone features to
improve the accuracy of FFS; the following sections provide
a more elaborate description of our techniques.

VOLUME 4, 2020 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

FIGURE 4: Rotation of Slices: FFS populates its database
with different rotations of each slice to increase the accuracy
of search.

A. ROTATION OF SLICES

The FFS framework populates its database offline with nu-
merous fingerprints, so that during the online search phase it
can quickly match the fingerprint of the query object against
those stored in the database. In this optimization, our goal is
to increase the probability of matching a CAD model when
it has been rotated or transformed. In particular, during en-
rollment of new CAD models in the FFS database, we apply
our fingerprint generation algorithm to various rotations of
the 3D model along all three axes. This is possible by using
the following steps: we first slice the object, project it on 2D
grids, rotate the grids, compute FFTs, generate the signatures,
and finally store all of them in the database.

For clarity, we refer to this technique as “rotation of
slices”, since one can interpret it as having the 3D model
steady, rotate the slices and then apply the rest of the steps.
Fig. 4 illustrates our rotation of slices approach, where a col-
lection of signatures is generated and stored in the database
for each different rotation using 45 degree increments in this
example. Notably, using the 45 degree increments depicted
in Fig. 4, we would end up with 8× more signatures (i.e.,
360/45 = 8), all describing the same model from different
angles. This technique offers a trade-off between offline
enrollment time, database storage cost and the probability of
finding matches during the online search phase.

With respect to the number of rotations per axis (e.g., 8
in the previous example), our evaluation shows that even
with a small number of rotations, the search accuracy of FFS
is further improved. At the same time, our framework can
minimize the storage requirements of the rotation of slices
technique by identifying duplicate (redundant) signatures.
For example, rotations of a symmetric shape (such as a
sphere) do not provide additional information about the 3D
object and the generated signatures would be the same for
each rotation. In this case, FFS stores a single copy of the
fingerprint in the database, optimizing space requirements.

FIGURE 5: Star Rotations: FFS rotates the object with
respect to X, Y , and Z axes and generates signatures for
each rotation.

B. STAR ROTATION
Similar to how 3D object scanners work (e.g., [21]), FFS
offers the ability to rotate a 3D model on an axis parallel
to the projection plane. The intuition is that analyzing a 3D
model from different angles offers a more comprehensive
understanding of its geometry and features. For instance, a
tetragonal pyramid observed directly from below may appear
indistinguishable from a cube; however, rotating the pyramid
on an axis perpendicular to the observation angle would
immediately reveal additional features (i.e., its triangular
faces), which allows for correct deduction of the object’s true
nature.

To enable this capability in our FFS framework, we first
define an axis of rotation and a virtual circle on a plane
perpendicular to the selected axis, so that its center is located
on the axis of rotation. Next, we compute evenly spaced
points on our virtual circle that will define rotations by an
incremental angle. For example, if the incremental angle is
chosen to be ten degrees, this choice would result in 36
evenly spaced points along the circle’s circumference. Then,
for each selected point on the virtual circle, FFS computes
the parametric equation of a line given two points: the center
of the circle and a given point on the circumference; for
each computed line, we can further define a 3D plane that
extends parallel to our selected axis of rotation. In Figure 5,
we illustrate an example of different 3D planes that slice a
target model across three rotational axes. Since the 3D planes
that intersect on each rotational axis form a star shape (when
looking at them head-on), we refer to this type of rotation
as “star rotation” (cf. “rotation of slices” in the previous
section).

Generation of Rotational Slices: While slicing a given CAD
model into N 3D slices with respect to the X , Y , and Z axes
(as presented in Section III-A), FFS also computes the set
intersection between the points on each aforementioned 3D
plane and the points within each 3D slice. The resulting set
intersections correspond to the rotational slices of the 3D ob-
ject across each axis of rotation. Each rotational slice is then
processed by FFS for peak detection, signature generation
and storage in the database.

The star rotation technique further increases the accu-
racy of both exact and partial matching, while presenting a
tradeoff between the incremental angle of rotation and the
computation/memory overhead associated with the increased
number of rotational slices. In FFS, this incremental angle,
and hence the number of rotational slices, is configurable

6 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

FIGURE 6: FFS interpolates the STL triangles to upscale the
resolution and enhance search by recursively creating new
triangles from the centroids of the existing ones.

and users can balance accuracy with storage requirements
for their particular application. In Section V, we further
discuss our experimental evaluation using different choices
for incremental angles.

C. INTERPOLATION
One of the drawbacks of using the STL file format is that
some CAD files are created at low resolutions and hence
are composed of relatively large triangles (facets), as shown
in Fig. 1(c). This gives a somewhat incomplete picture of
the shape as the points defined in the STL file are spaced
far apart, leaving large gaps between them. Moreover, since
FFS analyzes 3D objects based on the vertices of each facet,
having a low number of facets would create a sparse 3D grid
during the slicing step discussed in Section III-A. To address
this concern, FFS can upscale the resolution of the 3D object
using interpolation over its internal representation of the 3D
model.

As illustrated in Figure 6, for each triangle (facet) compos-
ing the given 3D object, FFS finds the centroid of the triangle
and adds the newly computed point to the quantized 3D grid
of the object. Next, our framework defines three new triangles
using the centroid of the original triangle and the three
original vertices; this process is repeated recursively until
all new centroids already have a mapping in the quantized
3D grid of the object. In effect, recursion stops when the
entire space inside of the original triangle is fully mapped
to points of the 3D grid. Essentially, interpolation enables
FFS to convert the outline of a triangle into a solid triangle,
establishing a more accurate internal representation of the
original object. We remark that this technique can be used
in tandem with our other techniques to improve the accuracy
and quality of FFS matches.

D. 3D FOURIER DOMAIN REPRESENTATION
As discussed in Section III-B, FFS employs the 2D FFT to
generate 2D-FDAs and detect peaks. Nevertheless, instead of
projecting 3D slices onto 2D grid projections, it is possible to
transform the 3D slices directly using the three-dimensional
FFT. In this case, each 3D slice that is being processed by the
3D FFT is a (relatively thin) rectangular prism. Specifically,
the thickness of the 3D slice impacts the total number of 3D
points processed together by the 3D FFT: decreasing the slice

TABLE 1: Configurable thresholds of FFS.

Parameter Description

grid-size The 2D (or 3D) slice grid dimensions.
N Number of slices to divide 3D model.
P Number of peaks to keep after filtering.
fan-out Number of signatures for each peak.
K Max number of search results.

minsig Min hashes to match in a neighborhood.
slices-rotation Enable rotation of slices.
star-rotation Enable star rotation.
interpolation Enable interpolation.
3D-FFT Use 3D FFT.

thickness decreases the required memory overhead for each
FFT invocation, while it increases the total number of 3D
slices to be processed. Thus, in this memory/time tradeoff,
having thin slices ensures that only a relatively small part
of the 3D object needs to be kept in memory at any time,
and each 3D slice can be discarded after FFT processing and
signature generation.

Using a 3D FFT eliminates any loss of information caused
by projecting 3D points on 2D grids, so it offers a more com-
plete representation of the 3D model in the Fourier domain.
At the same time, each 3D transformation incurs increased
overheads with respect to computation time, memory over-
head, as well as time to populate and query the database com-
pared to the 2D FFT approach. In our experiments (Section
V) we provide a more elaborate comparison of the overheads
of the 3D FFT transformations.

V. EVALUATION OF OUR FRAMEWORK
The goal of our experimental evaluation is to assess the
accuracy of FFS and understand how our proposed advanced
matching techniques improve the CAD model retrieval re-
sults. FFS contains various thresholds and configurable pa-
rameters (shown in Table 1) that affect the timing and stor-
age overheads, as well as the accuracy of our framework.
Table 2 summarizes performance and top-3 accuracy for our
exact match experiments using the FabWave dataset [22]. In
this case, top-3 accuracy measures if one of the first three
retrieved answers correctly identifies the input query model;
in general, top-K accuracy measures if the expected answer
is among the first K retrieved results.

A. EXPERIMENTAL SETUP
For evaluating FFS we employ the FabWave CAD dataset
that contains approximately 3000 unique manufacturing
models. This dataset consists of 24 classes of STL files
corresponding to various models of components such as
screws, bolts, and washers and was designed to support man-
ufacturing research. Our experimental results are obtained on
a t3.2xlarge AWS EC2 instance running with eight virtual
processors up to 2.5 GHz and 32 GB RAM. We implemented
FFS using Python 3.6.8 and LevelDB 1.22, an open-source

VOLUME 4, 2020 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

FIGURE 7: Fingerprint Efficiency Index (FEI): FEI scores for all FabWave classes using 2 and 6 slices for both the fine-
grained and neighborhood-based matching (minsig = 2). The patterned bars stacked on top of the solid-color ones indicate the
FEI improvement attributed to the use of neighborhoods over the fine-grained approach (higher is better).

key-value storage library provided by Google.3 Finally, the
host system is running Ubuntu 18.04 with the 4.15.0 Linux
kernel and OpenSCAD 2019.05, which is used to transform
3D models in our experiments.

B. DATABASE LEARNING
Enrolling in our database all the FabWave design files takes
approximately 20.8 minutes and 55.3 minutes for N = 2
and N = 6 slices per axis respectively. We remark that this
is a one-time cost, as once the files are loaded they will
remain in the database until removed. Files can be added
to the database in approximately 0.4 second per file (using
N = 2 slices) and 1.08 seconds per file (using N = 6
slices). For the FabWave design files, which consist mostly
of small components such as screws and bolts, it is ideal
to choose a small number of slices as the N parameter.
If N is too large, the number of peaks per slice will be
minimal and therefore, each generated fingerprint encodes
less unique information about the corresponding model. At
the same time, as reported in Table 2, increasing the number
of slices offers a trade-off with performance: having more
slices would increase the number of projections on 2D grids
that need to be transformed to the Fourier domain using 2D
FFT.

In the FabWave dataset, we observed that there are many
identical files with different filenames in some classes. This
was discovered through hashing the actual contents of all
STL files (i.e., excluding the first and the last line of the
STL which encodes only file name information) with SHA-
1 and creating a key-value dictionary with a filename as the
key and a corresponding hash as the value. After sorting this
dictionary by hash and found many identical hashes which
indicate that multiple STL files in FabWave have identical
contents. As we intend to conduct analysis of the search ac-
curacy based on the dataset of unique shapes, such duplicates

3FFS framework is open-source and available online at
https://github.com/TrustworthyComputing/Fourier-Fingerprint-Search.

can skew our results; hence, we removed all redundant files,
of which there were exactly 618. The resulting dataset used
for our experiments consists of the 3079 unique files.

C. FEI INDEX

In addition to top-N accuracy of our framework, we further
define a custom metric called “fingerprint efficiency index”
or FEI, which corresponds to the number of signatures (or
neighborhoods) that are matched divided by the total number
of signatures/neighborhoods in the query file. For each query,
this metric is computed for every file in the database that
has at least one signature or neighborhood match with the
input. Essentially, this metric is a performance indicator of
how uniquely a given object is represented by its fingerprint.
The range of FEI is 0.0 to 1.0, where a score of 0.0 indicates
that no signatures/neighborhoods in the query matched with a
particular file in the database and a FEI score of 1.0 indicates
that all signatures/neighborhoods in the query matched. From
a user’s perspective, files with a FEI score close to 0.0 have
little in common with the query object while results closer to
1.0 indicate an exact match. FFS will return the top K files
in the database with the highest FEI score for a given query.

In Fig. 7 we report the FEI scores for all the classes in
the FabWave dataset using both our search techniques with
N = 2 and N = 6 slices. For neighborhoods, we set
the minsig parameter to 2, leaving more room for partial
matches. As expected, the neighborhoods technique achieves
higher FEI averages for most of the classes compared to
the fine-grained method. This observation is attributed to
the following: First, the total number of signatures that
our fine-grained technique uses for matching is significantly
higher than the total number of neighborhoods. Moreover,
the fine-grained technique operates on individual signatures
and identifies a match when a database file has the same
signature in its fingerprint as the input query, whereas the
neighborhood approach identifies a match when at least
minsig signatures are matched within the same group. As a

8 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

TABLE 2: Fingerprint generation cost and top-3 accuracy experiments for exact matching using the FabWave dataset with
fan-out= 10, P = 10 peaks, and minsig = 10.

FabWave
Class

Number
of Files

Timing (sec) Exact Matching Accuracy
Fingerprint generation Fine-grained Neighborhoods

Number of Slices Number of Slices Number of Slices
2 6 2 6 2 6

Bearings 58 22.2 62.0 1.0 1.0 1.0 1.0
Bolts 11 6.4 11.9 1.0 1.0 1.0 1.0

Brackets 52 17.3 48.1 1.0 1.0 1.0 1.0
Bushing Damping Liners 13 5.9 14.3 1.0 1.0 1.0 1.0

Bushing 310 117.5 331.5 1.0 1.0 1.0 1.0
Collets 70 24.8 67.4 1.0 1.0 1.0 1.0
Gasket 73 28.7 77.6 1.0 1.0 1.0 1.0

Grommets 202 86.8 224.2 1.0 1.0 1.0 1.0
Headless Screws 154 106.5 211.4 1.0 1.0 1.0 1.0
Hex Head Screws 84 45.7 95.0 1.0 1.0 1.0 1.0

Keyway Shaft 250 68.9 195.3 0.97 1.0 0.97 0.94
Machine Key 76 18.8 53.1 1.0 1.0 1.0 1.0

Nuts 47 18.9 52.9 1.0 1.0 1.0 1.0
O Rings 376 164.3 445.7 1.0 1.0 1.0 1.0

Pipe Fittings 28 14.6 35.3 1.0 1.0 1.0 1.0
Pipe Joints 10 5.6 13.0 1.0 1.0 1.0 1.0

Pipes 9 5.8 12.8 1.0 1.0 1.0 1.0
Rollers 14 5.9 16.0 1.0 1.0 1.0 1.0

Rotary Shaft 250 70.2 217.2 0.73 0.98 0.72 0.85
Shaft Collar 57 23.9 66.8 1.0 1.0 1.0 1.0

Slotted Flat Head Screws 112 39.3 112.3 1.0 1.0 1.0 1.0
Socket Head Screws 154 75.6 179.7 1.0 1.0 1.0 1.0

Thumb Screws 23 8.6 23.1 1.0 1.0 1.0 1.0
Washers 646 264.5 748.8 1.0 1.0 1.0 1.0

Total 3079 1246.9 3315.4 - - - -
Average - 0.40 1.08 0.975 0.999 0.974 0.983

result, our neighborhood-based matching operates at a more
coarse granularity compared to fine-grained matching.

D. EXACT MATCHING
One important test of any search framework is its ability to
successfully query an object identical to an existing database
entry and retrieve the expected output. Table 2 presents
the top-3 accuracy for exact matching across all FabWave
classes, as well as the fingerprint generation cost while pop-
ulating the FFS database with 3D models of each class. In
particular, since both the enrollment and search phases com-
pute the same set of signatures for each file in the dataset, the
fingerprint generation cost of a single file is approximately
the same in both cases. In fact, the only difference between
these two phases is that enrollment generates a fingerprint to
add it in the database while searching computes a fingerprint
from the input file to query the database. The average time
to generate one fingerprint and either store it in the database
or retrieve it is 0.4 seconds and 1.08 seconds with N = 2
and N = 6 slices respectively. Notably, the overall top-3
accuracy over 3079 CAD models in the dataset approaches

99.9% using N = 6 slices for our fine-grained technique.
Our analysis reveals that the CAD files within the same

class have very similar shape characteristics: in many cases,
the only difference between files is a small change in length
or volume. For example, as we observe in Table 2, the
“Rotary Shaft” class has relatively lower accuracy for N = 2
slices with either of our search techniques. This observation
is attributed to the large number of files in this class (namely
250), as well as the high similarity between these models and
the “Keyway Shaft” models. Indeed, both the “Rotary Shaft”
and the “Keyway Shaft” classes are composed of mostly
oblong objects (i.e., objects that are long and at the same
time very thin). As a result, using only N = 2 slices does
not sufficiently break down this peculiarity, which causes
degraded FEI score and accuracy results. Conversely, using
more slices increases the accuracy to 98% for our fine-
grained technique.

E. CLASSIFICATION
An essential indicator of the viability of a search framework
is its ability to return values in the same category, or class,

VOLUME 4, 2020 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

FIGURE 8: Classification using 10-fold cross-validation:
Experimental results for average top-3 classification accuracy
and average fingerprint generation time with different fan-out
values using 10-fold cross-validation. Analysis based on both
the fine-grained and the neighborhoods matching technique
for all 24 FabWave dataset classes using N = 4 slices and
minsig = 5.

as the input query, especially when the query does not exist
in the database. As already discussed, FFS returns the top
K similar 3D models that match the query file; in case of
the FabWave dataset, which is organized in 24 classes, the
classification operation identifies files from the same class as
the input query within the top K results of FFS, given that
at least K files exist in that FabWave class. Thus, when a
user queries the database using an object from a specific class
(e.g., a “hex head screw”), the top K results should include
objects from the same class (i.e., hex head screws).

To evaluate our framework’s classification accuracy, we
perform 10-fold cross-validation experiments by splitting
each class of CAD files in the dataset into 10 subsets of
similar size. For our cross-validation process, we select 9
subsets from each class and train the FFS database with the
union of all these subsets (i.e., 216 subsets across 24 classes,
corresponding to 90% of our dataset); each CAD file from
the remaining 10% of the dataset is used as a test set to query
the database. This selection process is repeated a total of 10
times so that each iteration uses a different test set for queries,
and all CAD files in the FabWave dataset are used as an input
query exactly once. Our classification results are summarized
in Fig. 8 for different fan-out parameters.

Fan-out experiments: The exact matching results presented
in Table 2 correspond to a fan-out value of 10, which was
experimentally selected to optimize accuracy. To further il-
lustrate the effect of this parameter on classification, in our
10-fold cross validation experiments we vary the fan-out
value from 5 to 25 (Fig. 8). As with exact matching, we
observe that FFS achieves the highest classification accuracy
with a relatively small fan-out value of 10. This is attributed
to the fact that a larger fan-out value would generate more
signatures per CAD model and thus incur a higher collision
probability between them. Conversely, having a smaller fan-
out value (e.g., 5) does not yield enough signatures to accu-
rately describe the CAD model, which results in decreased
matching performance. Thus, for a given dataset, the fan-
out parameter needs judicious tuning to optimize accuracy.
Using a fan-out= 10, our classification experiments show
that FFS can achieve 95% top-3 accuracy on average using
fine-grained matching.

(a) Hex Head
Screw Query

(a1) Match #1 (a2) Match #2 (a3) Match #3

(b) Thumb Screw
Query

(b1) Match #1 (b2) Match #2 (b3) Match #3

(c) Gasket Query (c1) Match #1 (c2) Match #2 (c3) Match #3

FIGURE 9: Search with partial matching: Fine-grained FFS
search for partial matching using “Hex Head Screw”, “Thumb
Screw”, and “Gasket” queries. The first column of each row
(blue highlight) is the input query model followed by the top 3
retrieved matches.

F. PARTIAL MATCHES
Like classification, our experiments further verify the ability
of FFS to retrieve models similar to an input query (i.e., par-
tial matching). Fig. 9 illustrates this capability using example
designs from the “Hex Head Screws”, “Thumb Screws”, and
“Gasket” class of the dataset: The first column shows the
input query models, while the next three columns show the
top-3 results for each query. The three examples in the figure
illustrate that FFS returns designs from the same class as the
query (e.g., for Fig. 9a, all top-3 results are “hex screws”
instead of a different class, such as “headless screws” that
have a similar shape). Moreover, we observe that the returned
results look very similar to the query model and, in some
cases, the differences are minute and not obvious at first
glance:

1) The query in Fig. 9a returns an exact match first and
two additional “Hex Head Screws”, one with more
threads and one with the same number of threads but
is skinnier and longer.

2) Using the query of Fig. 9b retrieves an exact match
first as well as two similar “Thumb Screws”, one with
a skinnier shaft and one with a shorter shaft.

3) The search for a “Gasket” (Fig. 9c) first returns an
exact match along with two additional matches, one
with with different hole diameters and one slightly
thicker.

Queries using altered files: We extend our analysis of partial
matching by modifying the CAD files of the FabWave dataset
in a variety of ways and then use the altered files as queries

10 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

to a database already populated with the original dataset.
Our modifications include (a) perturbing a CAD file, (b)
degrading its resolution (i.e., reducing number of triangles as
illustrated in Fig. 1) and (c) rotating the 3D object by varying
degrees across all three axes. The next paragraphs elaborate
on each modification approach and discuss the performance
of FFS for partial matching using altered files.

1) Random Perturbations

For all classes of the dataset, we introduce perturbations
to the STL files by randomly permuting the order of the
STL triangles to generate different files with respect to bi-
nary contents, yet encoding exactly the same 3D share; this
transformation is applied directly to each CAD file using
Python scripts. In our results, we observe no changes in both
accuracy and FEI of each CAD file in each class, since the
relative order in which the triangles appear in a file does not
affect the 3D model (i.e., the same set of triangles encodes
the same information irrespective of the order). Indeed, FFS
is internally sorting the STL vertices before processing them,
so its internal representation of the 3D model does not depend
on the order of triangles. This experiment illustrates the
robustness of our approach when the contents of STL files are
perturbed (e.g., when the files are opened and then saved by
CAD programs that alter the order of triangles representing
the design).

2) Degrading the Model Resolution

A more aggressive approach to evaluate the limits of our
framework’s partial matching capabilities is by altering the
resolution of the 3D object. In this case, it is possible to de-
grade the resolution of an CAD model by randomly removing
some triangles from the STL file. To evaluate this method,
we created Python scripts that tamper with STL files and
remove 5% random facets, which sometimes creates open
and discontinuous surfaces. In case, FFS was still able to
successfully match the degraded STL models with the orig-
inal (untampered) design in the database with a negligible
accuracy difference.

3) Random Rotations

In addition to perturbations, we also evaluate the robustness
of the partial matching using random rotations in the design.
Specifically, we employ the OpenSCAD software to generate
variants of the original 3D models in the FabWave dataset
so that each variant is rotated by 1-5 degrees in the X , Y
and Z axis. In our experiments, we use the rotated variants
as input queries against a database that is populated with
the original files, and analyze the returned results. For each
rotated variant, partial matching is expected to retrieve the
original (non-rotated) CAD file from the database, along with
similar files from the same class as the input. At the same
time, querying with random rotations is expected to decrease
the FEI score since the rotated files are not enrolled in the
database.

FIGURE 10: Enhanced search with star-rotations: Aver-
age fingerprint generation time per CAD model and top-5
accuracy for partial matching employing the star-rotations
optimization for the “Brackets” class with N = 2 slices, fan-
out = 10, P = 10 peaks and minsig = 5. Increasing the
number of rotations from zero (i.e., no rotation) to 36 improves
the average accuracy by 53% for neighborhoods and 18% for
fine-grained.

In Table 3 we analyse the impact of random rotations
to the top-5 accuracy of search when rotating on the X
axis, both X and Y or all three axes respectively. As we
observe in our results, the impact of random rotations across
all three axes degrades accuracy by about 15-20%. Indeed,
FFS can retrieve the correct model as a top-5 result with
80-83% probability using both of our matching techniques,
without enabling any of the advanced features proposed in
Section IV. Notably, random rotations have a bigger impact
on some classes (such as “Bolts”, “Bearings” and “Gasket”)
compared to others (e.g., “Collets” and “Pipe Fittings”). This
is attributed to shape characteristics of each class and how
rotations across all axes affect the generated signatures. For
instance, rotating a Gasket (Fig. 9c) across its long side (i.e.,
using an axis across its diameter) can impact the detected
peaks in the Fourier domain and increase the fingerprint
differences with the original design. Thus, to increase the
matching accuracy in these cases, we can further employ our
advanced feature techniques, as discussed next.

4) Rotation of Slices and Star Rotations

Employing our two rotation techniques can significantly im-
prove the accuracy of FFS during partial matching. Our eval-
uation focuses on the “Brackets” class of FabWave, which
yields non-optimal partial matching accuracy when the input
query is randomly rotated across all three axes (Table 3).
Rotation of Slices: In this experiment, we divide each 3D
model in N = 2 slices and populate the FFS database with
fingerprints of each file as well as the fingerprints gener-
ated using rotational slices at 45 degree increments (Section
IV-A). Notably, generation of rotational fingerprints is a one-
time (offline) cost only applicable to enrollment, and does not
re-occur during search; to match an input query, FFS does not
need to compute the rotational slices of the input file as part
of the query fingerprint. This is possible since the rotations
are already stored in the database, so the query fingerprint
will properly match the closest rotational fingerprint in the
database. Nevertheless, our analysis shows that the FabWave
dataset does not benefit from rotation of slices, since most
components already have high rotational symmetry.

VOLUME 4, 2020 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

TABLE 3: Partial matching using random rotations: Average top-5 search accuracy for partial matching when rotating the query
axes using OpenSCAD. Our analysis uses N = 4 slices, fan-out = 10, P = 10, and minsig = 5. FG and NB correspond to our
fine-grained and neighborhoods techniques respectively.

FabWave
Class

Partial Matching Accuracy
x rotation x, y rotation x, y, z rotation

FG NB FG NB FG NB

Bearings 0.84 0.76 0.57 0.5 0.47 0.4
Bolts 0.55 0.09 0.27 0.27 0.36 0.36

Brackets 0.94 0.79 0.92 0.63 0.85 0.65
Bushing Damping Liners 0.92 0.92 0.92 0.92 0.92 0.92

Bushing 0.98 0.92 0.76 0.7 0.68 0.5
Collets 1.0 1.0 1.0 1.0 1.0 1.0
Gasket 0.95 0.93 0.4 0.44 0.45 0.52

Grommets 0.89 0.75 0.83 0.76 0.85 0.73
Headless Screws 0.96 0.95 0.92 0.93 0.93 0.94
Hex Head Screws 0.94 0.93 0.95 0.96 0.95 0.95

Keyway Shaft 0.98 0.86 0.98 0.94 0.95 0.98
Machine Key 0.78 0.61 0.76 0.39 0.72 0.38

Nuts 1.0 0.96 0.96 0.94 0.96 0.91
O Rings 0.99 0.98 0.98 0.97 0.98 0.96

Pipe Fittings 1.0 1.0 1.0 1.0 1.0 0.93
Pipe Joints 0.6 0.4 0.2 0.2 0.3 0.1

Pipes 0.78 0.78 0.78 0.56 0.89 0.89
Rollers 0.43 0.36 0.64 0.36 0.57 0.29

Rotary Shaft 0.87 0.8 0.85 0.84 0.88 0.92
Shaft Collar 1.0 1.0 0.98 0.98 0.96 0.96

Slotted Flat Head Screws 0.87 0.67 0.8 0.69 0.54 0.43
Socket Head Screws 0.98 0.93 0.98 0.94 0.98 0.94

Thumb Screws 0.96 0.96 0.96 0.91 0.91 0.91
Washers 0.83 0.95 0.83 0.94 0.74 0.85

Average 0.915 0.886 0.86 0.845 0.823 0.804

Star Rotations: This optimization offers accuracy improve-
ments as it allows FFS to encode additional information
about each enrolled 3D model from multiple angles, as
discussed in Section IV-B. Our experimental results for the
“Brackets” class are presented in Fig. 10 for a varying num-
ber of rotations, starting from zero (i..e, no rotations) to 36.
Compared to the rotation of slices discussed in the previous
paragraph, using 36 star rotations can substantially increase
the average top-5 accuracy by 18% for fine-grained search
as well as by 53% for neighborhoods, resulting in 100%
average accuracy. In this case, maximizing the accuracy is
traded for increased computational overheads, so the average
fingerprint generation time increases from about 0.5 seconds
to about 3.7 seconds. Likewise, using 18 star rotations offers
10% and 47% accuracy improvement for the fine-grained and
neighborhoods-based search respectively, with 2.2 seconds
average fingerprint generation time.

G. EXACT MATCHING WITH 3D FOURIER
TRANSFORMS

As discussed in Section IV-D, FFS can use a 3D Fourier
transform to avoid any information loss from projecting 3D
slices onto 2D grids. In this Section, we explore the benefits
of using the 3D FFT with exact matching experiments across
all 24 FabWave classes. An important observation is that
increasing the number of 3D slices helps manage the 3D
FFT memory overhead, as the latter depends on the number
of points in each 3D grid; thus, for our 3D FFT evaluation
we tune FFS to use 50 3D slices. As illustrated in our
top-3 accuracy experiments (Fig. 11), the 3D-FFT performs
equally well as the original 2D-FFT approach for our fine-
grained technique, but neighborhoods accuracy is degraded
for certain FabWave classes. This is due to the expanded size
of the neighborhoods, since the increased number of slices
yields a significantly larger number of signatures compared
to the 2D-FFT approach (which requires fewer slices such
as N = 2 or 6). Moreover, when the minsig parameter
is kept low to increase partial matching capabilities, fewer
identical features in the design are required to return a match.

12 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

FIGURE 11: 3D FFT Accuracy: Top-3 accuracy scores for all FabWave classes using 50 slices for both the fine-grained and
neighborhoods techniques (with minsig = 2).

As a consequence, the neighborhoods approach occasionally
results in partially matched files receiving a higher or equal
FEI score to the expected exact match.

We remark that the 3D-FFT approach incurs an increased
computation overhead for fingerprint generation (approxi-
mately 14 seconds per file), which impacts the time required
for database enrollment as well as for executing a query.
Likewise, a consequence of using more 3D slices is the
increased number of generated signatures, which in turn
increases the storage requirements for the FFS database. At
the same time, while the use of higher-dimension Fourier
transforms offers a more complete internal representation of
the 3D models at an increased computational cost, our exper-
iments show equivalent accuracy benefits for the FabWave
dataset compared to the 2D-FFT default configuration.

H. STORAGE REQUIREMENTS
The storage requirements of FFS are highly dependent on the
parameters used to generate the fingerprint of each CAD file.
The required size of the signatures of a file is expressed by
the following formula:

sigssize = 3×N×(P−fanout)×fanout×hashsize, (1)

where N is the number of slices and P is the number of
peaks. Essentially, for each one of the 3 axes and for each
slice, FFS calculates (P − fanout) × fanout signatures,
where each signature is hashsize bytes. In our implementa-
tion we used the SHA-1 hash algorithm that computes 160-
bit (i.e., 20-byte) digests. The FFS database stores these 20-
byte hashes, along with the corresponding CAD file names,
which can be of arbitrary length. Moreover, to enable our
neighborhoods technique, FFS needs to further track anchor
and signature pairs in the database. Thus, to enroll all 3079
FabWave dataset files and support our two search techniques
with fan-out = 10, P = 15 peaks and N = 2, 4, or 6
slices, FFS requires 90, 230 and 370 MB of database storage
respectively.

VI. RELATED WORK
Audio recognition and search impose a challenging problem.
Prior to Shazam [19], a popular music discovery algorithm,
there was no efficient way to process and search for an audio
sample in a big database. Shazam employs the notion of
a fingerprint for a song, which can uniquely identify that
audio sample. A fingerprint consists of a number of hash
IDs that combine key frequencies with their timing offsets
on the spectrogram of the song. A database is populated with
fingerprints of a large song collection offline, and during
search, the fingerprint of the query audio sample is gen-
erated and matched against the large set of fingerprints in
the database. Many audio recognition services [23], such as
SoundHound, Apple’s Siri, and Google’s Assistant, follow a
paradigm similar to Shazam.

Like audio search, shape recognition and retrieval is es-
sential for the Additive Manufacturing industry in order to
accelerate development of new designs. Nevertheless, the
increased dimensionality imposed by searching 3D objects,
as opposed to one dimensional audio data, results in a
far more complex problem. Many works focus on two-
dimensional data (e.g., [24]), while recently search in the
three dimensional space has become a more active area of
research [25]. Iyer et al. [26] categorize various shape search
methods in manufacturing feature recognition [27], local
feature descriptors [28], and global feature descriptors such
as Zernike moments [9] and spherical harmonics [8], [29]
of different parts of a given 3D object, to calculate similar
shapes. Unfortunately, these global feature based techniques
suffer from stability issues; a small change in the 3D model
does not necessarily result in a small change in the descriptor.
Conversely, our fingerprint-based approach is not as sensitive
to small changes in the model, as only a small number of
signatures will be affected, rendering partial matching more
effective.

The categorization continues with graph and tree based
techniques [11], [30], [31], which generate an interpretation
of a CAD model that incorporates all possible association se-

VOLUME 4, 2020 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

quences (i.e., matchings) between model surfaces and scene
surfaces, as well as histogram-based methods (e.g., [32],
[33]). However use of large graphs leads to high storage
usage and smaller graphs often result in loss of key shape
details. Similarly, the histogram-based techniques require
a large number of bins to accurately describe a shape,
leading to increased memory requirements. The authors of
[10] propose a method for searching 3D models using two-
dimensional views, called adaptive views clustering (AVC).
The AVC method uses Zernike moments to construct the
two-dimensional views, which results in the same stability
issues that plague the global feature techniques. In addition,
[34] presents a technique that utilizes convolutional neural
networks (CNNs) to enable 3D object recognition and [35]
proposes three partial retrieval modes including normal re-
trieval, exact retrieval and relaxed retrieval targeting the early
design stage. Nevertheless, CNN based techniques come with
both high computational costs and large amounts of training
data in order to train the networks. Finally, our framework
focuses on three important aspects of search performance:
classification, partial matching, and exact matching, whereas
other works (e.g., [10], [32], [33]) emphasize only one of
these aspects.

VII. CONCLUDING REMARKS
In this paper, we present an efficient and highly configurable
framework for searching 3D CAD models. Our methodology
is based on the generation of unique and efficient signatures
that encode important characteristics of these models in the
frequency domain. To deduce these characteristics, we lever-
age multi-dimensional FFTs and find the magnitude peaks in
the frequency domain. Based on the generated signatures, we
develop two alternative search techniques: the first focuses on
the fine-grained characteristics of the CAD models, while the
second introduces the notion of neighborhood-based search
that offers more coarse-grained matching. Furthermore, we
optimize the accuracy of these techniques by introducing two
forms of rotational signatures that encore information about
3D designs across different angles.

We extensively evaluate our search framework using the
FabWave CAD dataset, which consists of over 3000 realistic
3D CAD designs. In our experiments we analyze the exact
matching performance of our techniques and report up to
99.9% average top-3 accuracy for fine-grained matching.
Likewise, without rotational signatures, our partial matching
experiments show an average top-5 accuracy of 80-83%,
which can be further increased up to 100% using our star-
rotation optimization technique. Our experiments further an-
alyze the impact of changing various configurable parame-
ters, such as the number of rotational slices; these parameters
can be fine-tuned to optimize performance of our search
framework for different target datasets.

APPENDIX. FAST FOURIER TRANSFORM
The fast Fourier transform (FFT) [17] is an algorithm that
computes the discrete Fourier transform (DFT) of a signal

and converts it from the time or space domain to a repre-
sentation in the frequency domain. FFTs are widely used in
various fields and for different purposes, such as digital signal
processing, data compression, polynomial multiplication, or
even multiplication of large integers [36], [37].

Given a list of complex numbers x0, . . . , xN−1, the DFT
is defined by the following formula:

Xk =
N−1∑
n=0

xne
−i2π
N kn k = 0, 1, . . . , N − 1 (2)

where e
i2π
N is a primitive Nth root of unity. Evaluating the

definition of Eq. 2 directly requires O(N2) operations since
there are N outputs Xk, and each output requires a sum of
N terms. The fast Fourier transform offers an O(NlogN)
implementation of the DFT computation, resulting in a sig-
nificant runtime improvement.

The Fourier transform, and thus FFT, can be generalized to
higher dimensions. Many discrete signals are functions in the
2D space and we can compute their corresponding frequency
content using a 2D discrete Fourier transform. Conceptually,
the 2D transform is a sequence of 1D transforms with respect
to the X and Y axes, resulting in a nested summation as
shown in Eq. 3. It is possible to further extend the transform
to higher dimensions by introducing an additional nested sum
for each dimension.

Xk1,k2 =

N1−1∑
n1=0

(
e

−i2π
N1

k1n1

N2−1∑
n2=0

xn1,n2e
−i2π
N2

k2n2

)
kd = 0, 1, . . . , Nd − 1, d = 1, 2 (3)

REFERENCES
[1] M. Savastano, C. Amendola, D. Fabrizio, and E. Massaroni, “3D printing

in the spare parts supply chain: an explorative study in the automotive
industry,” in Digitally supported innovation. Springer, 2016, pp. 153–
170.

[2] S. C. Joshi and A. A. Sheikh, “3D printing in aerospace and its long-term
sustainability,” Virtual and Physical Prototyping, vol. 10, no. 4, pp. 175–
185, 2015.

[3] R. Bracci, E. Maccaroni, and S. Cascinu, “Bioresorbable airway splint cre-
ated with a three-dimensional printer,” New England Journal of Medicine,
vol. 368, pp. 2043–2045, 2013.

[4] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams,
C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, “The status, chal-
lenges, and future of additive manufacturing in engineering,” Computer-
Aided Design, vol. 69, pp. 65–89, 2015.

[5] A. A. Zadpoor and J. Malda, “Additive manufacturing of biomaterials,
tissues, and organs,” Annals of Biomedical Engineering, vol. 45, pp. 1–
11, 2017.

[6] R. Leal, F. Barreiros, L. Alves, F. Romeiro, J. Vasco, M. Santos, and
C. Marto, “Additive manufacturing tooling for the automotive indus-
try,” The International Journal of Advanced Manufacturing Technology,
vol. 92, no. 5-8, pp. 1671–1676, 2017.

[7] T. G. Gunn, “The mechanization of design and manufacturing,” Scientific
American, vol. 247, no. 3, pp. 114–131, 1982.

[8] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin,
and D. Jacobs, “A search engine for 3D models,” ACM Transactions on
Graphics (TOG), vol. 22, no. 1, pp. 83–105, 2003.

[9] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On visual similar-
ity based 3D model retrieval,” in Computer graphics forum, vol. 22, no. 3.
Wiley Online Library, 2003, pp. 223–232.

14 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

[10] T. F. Ansary, M. Daoudi, and J.-P. Vandeborre, “A Bayesian 3-D search en-
gine using adaptive views clustering,” IEEE Transactions on Multimedia,
vol. 9, no. 1, pp. 78–88, 2006.

[11] D. A. Keim, “Efficient Geometry-Based Similarity Search of 3D Spatial
Databases,” in Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’99. Association
for Computing Machinery, 1999, p. 419–430.

[12] N. Gupta, F. Chen, N. G. Tsoutsos, and M. Maniatakos, “ObfusCADe:
Obfuscating additive manufacturing cad models against counterfeiting,” in
Proceedings of the 54th Annual Design Automation Conference, 2017, pp.
1–6.

[13] S. E. Zeltmann, N. Gupta, N. G. Tsoutsos, M. Maniatakos, J. Rajendran,
and R. Karri, “Manufacturing and security challenges in 3D printing,” Jom,
vol. 68, no. 7, pp. 1872–1881, 2016.

[14] N. G. Tsoutsos, H. Gamil, and M. Maniatakos, “Secure 3D printing:
Reconstructing and validating solid geometries using toolpath reverse
engineering,” in Proceedings of the 3rd ACM Workshop on cyber-physical
system security, 2017, pp. 15–20.

[15] F. Chen, Y. Luo, N. G. Tsoutsos, M. Maniatakos, K. Shahin, and N. Gupta,
“Embedding tracking codes in additive manufactured parts for product au-
thentication,” Advanced Engineering Materials, vol. 21, no. 4, p. 1800495,
2019.

[16] W. C. Regli and M. Spagnuolo, “Introduction to shape similarity detection
and search for CAD/CAE applications,” Computer-Aided Design, vol. 9,
no. 38, pp. 937–938, 2006.

[17] H. J. Nussbaumer, “The Fast Fourier Transform,” in Fast Fourier Trans-
form and Convolution Algorithms. Springer, 1981, pp. 80–111.

[18] W. Koenig, H. Dunn, and L. Lacy, “The sound spectrograph,” The Journal
of the Acoustical Society of America, vol. 18, no. 1, pp. 19–49, 1946.

[19] A. Wang, “An industrial strength audio search algorithm.” in Ismir, vol.
2003. Washington, DC, 2003, pp. 7–13.

[20] P. Du, W. A. Kibbe, and S. M. Lin, “Improved peak detection in mass
spectrum by incorporating continuous wavelet transform-based pattern
matching,” Bioinformatics, vol. 22, no. 17, pp. 2059–2065, 2006.

[21] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low
cost 3D scanner based on structured light,” in Computer Graphics Forum,
vol. 20, no. 3. Wiley Online Library, 2001, pp. 299–308.

[22] B. Starly, A. Bharadwaj, and A. Angrish, “FabWave CAD
Repository Categorized Part Classes,” 2019. [Online]. Available:
http://rgdoi.net/10.13140/RG.2.2.31167.87201

[23] A. S. Master, T. P. Stonehocker, B. J. Levitt, J. Huang, and K. Mohajer,
“Systems and methods for sound recognition,” Mar. 8 2016, uS Patent
9,280,598.

[24] M. S. Lew, Principles of visual information retrieval. Springer Science &
Business Media, 2013.

[25] J. W. Tangelder and R. C. Veltkamp, “A survey of content based 3D shape
retrieval methods,” in Proceedings Shape Modeling Applications, 2004.
IEEE, 2004, pp. 145–156.

[26] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani, “Three-
dimensional shape searching: state-of-the-art review and future trends,”
Computer-Aided Design, vol. 37, no. 5, pp. 509–530, 2005.

[27] M. Ramesh, D. Yip-Hoi, and D. Dutta, “Feature based shape similarity
measurement for retrieval of mechanical parts,” J. Comput. Inf. Sci. Eng.,
vol. 1, no. 3, pp. 245–256, 2001.

[28] A. Cardone, S. K. Gupta, A. Deshmukh, and M. Karnik, “Machining
feature-based similarity assessment algorithms for prismatic machined
parts,” Computer-Aided Design, vol. 38, no. 9, pp. 954–972, 2006.

[29] A. Angrish, B. Craver, and B. Starly, “FabSearch: A 3D CAD Model-
Based Search Engine for Sourcing Manufacturing Services,” Journal of
Computing and Information Science in Engineering, vol. 19, no. 4, 2019.

[30] P. J. Flynn and A. K. Jain, “BONSAI: 3D object recognition using
constrained search,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 10, pp. 1066–1075, 1991.

[31] A. S. Deshmukh, A. G. Banerjee, S. K. Gupta, and R. D. Sriram, “Content-
based assembly search: A step towards assembly reuse,” Computer-aided
design, vol. 40, no. 2, pp. 244–261, 2008.

[32] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distribu-
tions,” ACM Transactions on Graphics (TOG), vol. 21, no. 4, pp. 807–832,
2002.

[33] C. Y. Ip, D. Lapadat, L. Sieger, and W. C. Regli, “Using shape distributions
to compare solid models,” in Proceedings of the seventh ACM symposium
on Solid modeling and applications, 2002, pp. 273–280.

[34] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in Proceedings

of the IEEE international conference on computer vision, 2015, pp. 945–
953.

[35] J. Bai, S. Gao, W. Tang, Y. Liu, and S. Guo, “Design reuse oriented partial
retrieval of CAD models,” Computer-Aided Design, vol. 42, no. 12, pp.
1069–1084, 2010.

[36] L. Marple, “Computing the discrete-time ‘analytic’ signal via FFT,” IEEE
Transactions on signal processing, vol. 47, no. 9, pp. 2600–2603, 1999.

[37] M. Fürer, “Faster integer multiplication,” SIAM Journal on Computing,
vol. 39, no. 3, pp. 979–1005, 2009.

VOLUME 4, 2020 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013284, IEEE Access

Mouris et al.: Peak your Frequency: Advanced Search of 3D CAD Files in the Fourier Domain

DIMITRIS MOURIS (S’19) received the B.Sc.
(2016) and M.Sc. (2018) degrees in computer sci-
ence and computer systems respectively from the
National and Kapodistrian University of Athens,
Greece. He is currently pursuing the Ph.D. de-
gree in computer engineering with the Electrical
and Computer Engineering department at the Uni-
versity of Delaware, Newark, DE, USA. His re-
search interests include computer security and pri-
vacy, digital manufacturing, and zero-knowledge

proofs. Mr. Mouris is also the global challenge co-lead of the international
Embedded Security Challenge (ESC) competition that is held annually
during the Cyber Security Awareness Worldwide (CSAW) event.

CHARLES GOUERT (S’20) received the B.Sc.
degree (2018) in electrical and computer engineer-
ing from the University of Delaware, Newark, DE,
USA. He is currently pursuing the Ph.D. degree
in computer engineering with the Electrical and
Computer Engineering department at the Univer-
sity of Delaware, Newark, DE, USA. His current
research interests include computer security and
cryptography, digital manufacturing and private
outsourcing. He is also the global challenge co-

lead of the international Embedded Security Challenge (ESC) competition
that is held annually during the Cyber Security Awareness Worldwide
(CSAW) event.

NIKHIL GUPTA (M’20) received the Ph.D. de-
gree in engineering science from Louisiana State
University, specializing in lightweight advanced
composite materials. He is currently a Professor
with the Department of Mechanical and Aerospace
Engineering, New York University Tandon School
of Engineering. He is also affiliated with the Cen-
ter for Cybersecurity and the Department of Civil
and Urban Engineering. He has four issued and
six pending patents. He has published more than

195 journal articles and book chapters. His current research projects are
focused on cybersecurity in additive manufacturing and additive manufac-
turing security education and use of machine learning methods in materials
characterization. As a materials scientist, he has been interested in develop-
ing lightweight advanced composites of metals and polymers for dynamic
loading conditions. His research has been supported by the National Science
Foundation, the Office of Naval Research, the Army Research Laboratory,
and industry. He is a member of IEEE. He has served as a Membership
Secretary of the American Society for Composites and the Chair of the TMS
Composite Materials Committee.

NEKTARIOS G. TSOUTSOS (S’13–M’19)
Nektarios Georgios Tsoutsos received the Ph.D.
degree in computer science from New York Uni-
versity and the M.Sc. degree in computer engi-
neering from Columbia University. He is currently
an Assistant Professor with the Department of
Electrical and Computer Engineering, University
of Delaware, with a joint appointment in the De-
partment of Computer and Information Sciences.
His research interests are in cybersecurity and

applied cryptography, with a special focus in hardware security, trustworthy
computing, and privacy outsourcing, and holds a patent on encrypted com-
putation using homomorphic encryption. He has authored multiple articles
in the IEEE Transactions and conference proceedings, and serves in the
program committee of several international conferences. He is also the
faculty organizer of the international Embedded Security Challenge (ESC)
competition that is held annually during the Cyber Security Awareness
Worldwide (CSAW) event.

16 VOLUME 4, 2020


