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1 INTRODUCTION

A S organizations continue to produce more data, it be-
comes increasingly difficult and costly to maintain the

in-house infrastructure needed to analyze and manage this
information: whether it be customer information, corporate
records, or a plethora of other documents necessary for an
organization to function. The advent of cloud computing
has garnered the interest of these companies as an attractive
alternative. Nevertheless, one glaring problem with this
approach is that the cloud service provider can plausibly
view sensitive data stored on their servers. In addition,
cloud servers have become a lucrative target of cyberattacks,
which increases the risk of sensitive data being compro-
mised. In [1], the authors have identified six distinct attack
surfaces for cloud services, accounting for the various inter-
actions between the user, the cloud, and the offered service.
As a notable example, researchers were able to mount cross-
VM side-channel attacks to leak data from Amazon’s EC2
service [2].

Since users have no definitive control over the security of
their data in this outsourced context, they often turn to en-
cryption: the most widely employed mechanism to protect
data confidentiality. While standard encryption techniques
seem effective in this respect, there is a major downside with
this approach: “how can the cloud process user data while being
encrypted?”. Normally, to perform meaningful computations
the users have to download their encrypted data, decrypt
locally to retrieve and manipulate the plaintexts, re-encrypt,
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and finally re-upload to the cloud server. This process must
be repeated every time the data needs to be processed in
some way, which introduces major time and communication
overhead for the users, and effectively defies the goals of
outsourcing to the cloud.

A specialized form of cryptography called Fully Homo-
morphic Encryption (FHE) [3] offers a revolutionary solu-
tion to the problem of end-to-end encrypted computation,
which allows users to privately outsource their data to an
untrusted third party. Contrary to other privacy-preserving
technologies like zero-knowledge proofs [4], [5], [6] and
secure multi-party computation [7], [8], FHE allows clients
to completely outsource a computation to a cloud server se-
curely. Using FHE, one can instruct a third party to perform
operations on the outsourced data without ever exposing
the plaintext information, so that the third party never
learns anything about the input data or the intermediate
results. In effect, FHE has the potential to mitigate entire
families of eavesdropping and leakage attacks to the cloud,
as any disclosed information would always be encrypted.

While FHE is quite powerful, it still remains difficult
to use for a programmer with little to no experience in
cryptography. For instance, a popular open-source FHE
library called HElib [9] requires programmers to manually
handle key generation, determine various parameters, and
initiate special noise maintenance procedures when the FHE
ciphertext becomes too noisy to use.

Likewise, FHE computations are a particularly unnatural
fit for today’s computers, as existing processor designs are
not developed with encrypted computation in mind. For
example, native word sizes are typically set to 32 or 64 bits,
which are ill-suited to efficiently represent FHE ciphertexts
that can be on the order of several kilobytes, even for
implementations with small parameters. Further, since FHE
algorithms are expressed as arithmetic circuits, constructing
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and optimizing FHE computations is a non-trivial problem.
When working over encrypted bits, however, the same
techniques used in digital circuit design do not necessarily
translate in the encrypted domain. For instance, employing
wider circuits is more desirable for HE circuits since all
gates at the same depth can be executed in parallel. In
effect, the underlying hardware used to run an HE circuit
should also be taken into consideration when defining the
FHE computation: an HE adder built for a CPU with a small
number of cores should not be as wide as one designed to
run on a GPU backend. Instead, it should be fairly narrow
and aim to minimize the total number of gates in the circuit.

To address the usability and performance limitations of
FHE, we introduce a new encrypted computer architecture
that natively supports all FHE operations. Our approach
is realized in a novel processor design, called Juliet, that
is capable of running end-to-end FHE computations using
both CPU and GPU hardware acceleration. We complement
our custom Instruction Set Architecture (ISA) with an op-
timized abstract machine that implements native homo-
morphic computations. Moreover, to significantly improve
the usability of FHE, we introduce a domain-specific high-
level programming language, called eJava, along with a
compiler to translate high-level code into Juliet’s assembly
language (JAL). Overall, our versatile framework enables
programmers and embedded system designers to leverage
the numerous benefits of homomorphic encryption and
painlessly execute arbitrary programs on encrypted data.

Traditional FHE computation requires the target algo-
rithm to be expressed as a large arithmetic circuit [10], where
the difficulty of optimizing such circuits brings significant
usability restrictions to programmers. Our key observation
to resolve this major limitation is to express arbitrary pro-
grams as a sequence of FHE instructions on an encrypted com-
puter with special functional units. These custom functional
units implement special FHE circuits for these instructions
that are rigorously optimized to reduce latency and tailored
to the specific hardware platform running the encrypted
computation. The JAL assembly developed for this research
enables a wide range of plaintext operations along with
their equivalent FHE counterparts to support encrypted
computation. Likewise, Juliet’s I/O is enabled using two
input streams (dubbed tapes): A public tape is exclusively
used for plaintext inputs, while the private tape is used
solely for encrypted inputs.

Our new JAL assembly instructions are evaluated in the
encrypted domain using an underlying FHE cryptosystem.
In this work, we selected the highly efficient TFHE scheme
[11] that supports encrypted Boolean operations as logic
gates on ciphertexts. In particular, plaintext inputs are first
converted to binary and then encrypted bit by bit into
ciphertext arrays. Then, the encrypted data are uploaded to
a cloud service that implements the Juliet abstract machine,
along with a compiled JAL program. Additionally, we ob-
serve that incorporating operations between two plaintext
operands as well as mixed operations between plaintext
and ciphertext data results in substantial latency reductions
compared to solely encrypted operations. As such, Juliet
supports an array of these types of operations, which are ex-
ecuted by both an encrypted and plaintext ALU. Internally,
Juliet invokes the standard TFHE library that is capable

of evaluating approximately 76 FHE logic gate operations
per second. To support hardware acceleration on a GPU,
Juliet employs the cuFHE library to further achieve a 25×
acceleration of FHE operations compared to the CPU-only
TFHE library. Notably, both the TFHE and cuFHE libraries
are among the fastest fully homomorphic encryption imple-
mentations in existence today. Overall, our contributions in
this work can be summarized as follows:

• We introduce a new Instruction Set Architecture and
processor design tailored to encrypted computation.

• We propose an assembly language for encrypted pro-
cessors and implement a compiler to translate high-
level programs to our domain-specific assembly.

• We complement our design with a usable end-to-end
framework for compiling and executing JAL pro-
grams using FHE, leveraging both CPU- and GPU-
based hardware acceleration.

The rest of the article is organized as follows: In Sec-
tion 2, we offer a brief introduction to the theory of homo-
morphic encryption and related background information,
while in Section 3 we present our full stack framework
for end-to-end encrypted computation. Our eJava program-
ming language tailored for encrypted computation is pre-
sented in Section 4, and our experimental evaluation and
analysis are discussed in Section 6. Finally, Section 7 offers
a discussion and comparison of related works, and our
concluding remarks are presented in Section 8.

2 PRELIMINARIES

2.1 Fully Homomorphic Encryption
Bootstrapping is the mechanism that allows transforming
leveled HE schemes into fully homomorphic schemes. With
the invention of bootstrapping, FHE was made possible in
2009 by Craig Gentry [3], allowing the homomorphic eval-
uation of unlimited addition and multiplication operations
on encrypted values. Because these two operations form a
functionally complete set, it is theoretically possible to express
any algorithm as an arithmetic circuit of multiplications
and additions [3]. This observation is incredibly important
for FHE, as it offers a blueprint on how to evaluate any
program in the encrypted domain. Moreover, bootstrapping
can be used to refresh and reduce the ciphertext noise an
unlimited number of times, which enables the evaluation
of arbitrarily deep arithmetic circuits (e.g., iterative pro-
grams on encrypted data). Internally, bootstrapping works
by instructing the cloud to evaluate the FHE decryption
circuit homomorphically using an encryption of the secret key.
This counter-intuitive operation creates a new ciphertext
encrypted under the user’s secret key with a significantly
reduced noise magnitude [3].

It is important to note that the bootstrapping procedure
itself is, somewhat paradoxically, another source of noise,
albeit introducing much less noise than it removes. For
the user, this means that bootstrapping must be invoked
before the entire noise budget required for decryption is
depleted. The noise budget consumed by the decryption
circuit depends on a number of factors, where the most im-
portant is the plaintext modulus, which defines the range of
values that a plaintext can take on. Larger plaintext moduli
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require more noise budget in order to successfully evaluate
the bootstrapping procedure [12]. It is generally difficult
to predict the noise budget constraints of bootstrapping
with a given set of parameters, so this process requires
significant trial and error. Hence, this remains an essential
consideration given that several FHE libraries require users
to invoke the bootstrapping procedure manually. If the noise
budget remaining in a ciphertext is lower than what is
required by the bootstrapping procedure, the ciphertext will
not decrypt properly and is rendered useless.

Notably, the complexity and computational overhead
of bootstrapping depends on the underlying encryption
scheme and its parameters, such as the plaintext modu-
lus, the polynomial degrees, and prime chain size [13].
Likewise, the bootstrapping execution time across different
FHE constructions and parameter sets can vary from a
fraction of a second to upwards of 30 minutes. Thus, similar
to determining the minimum noise budget needed before
bootstrapping, optimizing for bootstrapping execution time
is a challenge. For example, FHE libraries like HElib provide
a list of pre-computed parameters for bootstrapping, but
these sets are not optimal for all applications [12].

Overall, the bottleneck for unlimited FHE operations is
the bootstrapping cost. Several works have focused on im-
proving the efficiency of bootstrapping (e.g., [13], [14]), and
have made great strides to enable FHE adoption outside of
research circles. As a result, a diverse set of innovative FHE
applications have been proposed, ranging from machine
learning [15] to biometrics [16].

2.2 The GSW Cryptosystem
Unlike other HE schemes that require key-switching (which
are needed for rotations and multiplications), GSW removes
the need for large key-switching matrices. Notably, the only
information shared with the cloud is a set of public parame-
ters. Internally, GSW uses a different approach compared to
previous FHE cryptosystems, by representing ciphertexts as
N×N matrices over Zq , where N is a dimension parameter
and q is a ciphertext modulus. Likewise, the secret key
in GSW is an N dimensional vector over Zq whereas the
public key is a uniformly random m× (N + 1) matrix over
Zq . Formally, a ciphertext c encrypts a plaintext p if the
following relationship holds: c · sk = p · sk + e, where sk
is the secret key vector and e is an error vector [17]. In this
case, decryption of c entails extracting the i-th row of c,
computing x = ⟨ci, sk⟩ and finally evaluating p = ⌊x/ski⌉.

In GSW, homomorphic addition and multiplication of
ciphertexts c1, c2 mirrors matrix addition and multiplication
on plaintexts p1, p2 respectively. More formally, we have the
following relationships:

csum · sk = (p1 + p2) · sk + (e1 + e2),

cprod · sk = (p1 · p2) · sk + p2 · e1 + c1 · e2,

where csum = c1 + c2 and cprod = c1 · c2. These equations
show that the noise accumulates much faster for multi-
plication versus addition. In fact, if the plaintext values
and elements of the ciphertext matrices are not kept small
relative to q, the noise explodes. To enforce this and allow
for more levels and evaluations within the noise budget,
GSW introduces a new noise mitigation technique called

flattening. The latter consists of a series of operations that
modify vectors without changing the dot product and is
used to scale the ciphertext matrices after every encryption,
addition, or multiplication operation. Finally, we observe
that this scheme becomes fully homomorphic by incorpo-
rating a bootstrapping procedure. In this case, the GSW
evaluation key holds a series of encryptions of the private
key and does not require key switching matrices (i.e., its size
is relatively small compared to other HE cryptosystems).

2.3 Homomorphic Encryption Libraries

There are a variety of libraries that implement HE devel-
oped by companies such as Microsoft and IBM, as well as
groups of academic researchers. All libraries have advan-
tages and disadvantages arising both from the underlying
HE scheme as well as the implementation itself. One of the
first was IBM HElib, which supports both the BGV [18] and
CKKS [19] schemes. HElib exposes addition and multipli-
cation operations over ciphertexts and can pack multiple
plaintexts into a single ciphertext (due to the batching
properties of both cryptosystems). The user is responsible
for setting most parameters, which offers a high degree of
control at the cost of usability. Notably, when using BGV in
an FHE context, bootstrapping must be manually invoked
in most cases, so ciphertext noise must be closely monitored.
Depending on parameter choices, a single bootstrap can take
from several seconds to several minutes, which makes the
library impractical for deep arithmetic circuits.

Likewise, Microsoft SEAL implements the BFV [20],
BGV, and CKKS HE schemes, and provides an intuitive API
for developers [21]. Nevertheless, SEAL does not support
FHE as bootstrapping is not supported. Thus, it is only
suitable for applications that have a small depth, which
excludes most computationally complex algorithms.

Conversely, the FHEW library which implements a ring-
variant of GSW, only supports an FHE mode of operation
and is oriented towards Boolean gates [22], as opposed
to adds and multiplies on encrypted data. Each ciphertext
encrypts a single bit of plaintext and the supported HE gates
consume two ciphertexts and output an encrypted result
(except for the univariate NOT gate). Since FHEW supports
all standard logic gates, it is functionally complete and can
orchestrate any arbitrary algorithm as a sequence of gates.
Additionally, FHEW achieves faster bootstrapping speeds
than BGV, CKKS, and BFV, while its noise reduction opera-
tion is invoked automatically during every gate evaluation, as
it is integral to the actual computation. The latency cost of a
single bootstrap is on the order of hundreds of milliseconds
on a CPU as opposed to seconds or minutes for the pre-
viously discussed schemes. Nevertheless, one disadvantage
of FHEW is that it does not support ciphertext batching,
which would allow many plaintext bits to be encrypted into
one ciphertext for SIMD-style computation.

Lastly, the TFHE library is also based on a ring variant
of GSW and improves upon FHEW by exhibiting even
faster bootstrapping speeds [14]. The TFHE bootstrapping
procedure exhibits low latency, a few milliseconds on a
CPU, for a variety of reasons. First, the parameters em-
ployed by both TFHE and FHEW are typically much smaller
than those used by the other cryptosystems. As a case in
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point, most FHE-CKKS implementations employ a cipher-
text polynomial degree of 216 or 217 and each coefficient
can be thousands of bits in length [23]. The reason large
parameters must be used is to accommodate for the noise
introduced by the CKKS bootstrap before it can be refreshed.
Conversely, TFHE employs polynomial degrees of 210, with
each coefficient being no more than 32 bits in length as
the bootstrapping consumes far less noise budget than that
required by schemes like CKKS. Another powerful feature
of the bootstrapping of this cryptosystem is that it allows
for non-linear logic gate computation is its programmability;
while refreshing the noise, it is possible to evaluate a lookup
table encoded as a polynomial for no added cost. In the
case of Boolean gates, most gates are implemented as a
series of linear operations over ciphertext data followed by
a bootstrap that evaluates a lookup table dependent on the
gate type to generate the final encrypted output.

Additionally, TFHE incorporates an encrypted multi-
plexer gate, which allows for oblivious selection between
two ciphertext inputs using an encrypted select bit. In-
ternally, TFHE treats a 2-to-1 multiplexer as a single gate
operation that requires two inherent bootstraps. This is an
important improvement over FHEW, which requires three
bootstraps to implement multiplexing using four gates (i.e.,
a NOT gate, two AND gates, and one OR gate). Another benefit
of TFHE is that only one settable parameter is available to
users with the standard API. This parameter indicates the
desired security level and TFHE will choose pre-configured
parameters to satisfy the given security requirement. Like
FHEW, ciphertext packing is not possible in TFHE and
all algorithms must be expressed in terms of Boolean cir-
cuits, which can be a limitation for programmers without
knowledge of logic synthesis. Nevertheless, TFHE boasts
the fastest bootstrapping speed compared to all other FHE
libraries, and thus it is selected as the target FHE scheme for
Juliet. In addition, we employ cuFHE [23] that implements
the TFHE cryptosystem using GPU acceleration and is capa-
ble of achieving approximately 25× higher encrypted logic
gate throughput compared to the CPU-only TFHE library.

3 FRAMEWORK OVERVIEW

The Juliet computer is designed to run on the cloud to
enable secure outsourcing with FHE. A high-level overview
of the interactions between the client and cloud is presented
in Figure 1: A client generates the necessary cryptographic
keys, compiles an encrypted program developed using our
high-level eJava language or the Juliet Assembly Language,
and loads both encrypted and unencrypted data into two
files representing the private and public tapes respectively.
These steps are automated using one of Juliet’s supporting
tools: the key generation module, the compiler, and the
preprocessor that reads sensitive data, encrypts the indi-
vidual bits of these inputs, and loads the ciphertexts into
the private tape file. Once the program, evaluation key, and
two tape files are uploaded to the cloud, the Juliet execution
engine can begin evaluation.

3.1 Evaluating Juliet Instructions
The cloud runs two concurrent modules to execute an
encrypted program with Juliet: an execution engine and

an encrypted ALU. When the execution engine fetches an
encrypted instruction, it signals the encrypted ALU which
implements various homomorphic functional units as TFHE
Boolean circuits. The ALU will execute the algorithm on
the data indicated by the execution engine, store the result
in a heterogeneous memory unit, and signal the execution
engine to proceed. For instance, if an encrypted add oper-
ation is encountered by the execution engine, it will send
a signal to the ALU, which will run an implementation
of an encrypted adder module using the inputs provided
by the main program. Similarly, to evaluate instructions
on plaintexts, the execution engine employs a standard
plaintext ALU and stores the result in the memory unit.

From a programmer’s perspective, there are two main
data types supported by Juliet: encrypted and unencrypted
integers, which can both live in the heterogeneous memory.
In both cases, the size of the encoded values is always
aligned to Juliet’s word size. The latter can be configured
since it informs a trade-off between the range of supported
plaintexts versus performance and memory overheads.

Operations on encrypted integers map to a sequence
of homomorphic logic gate operations in the TFHE cryp-
tosystem. Under the hood, each logic gate consists of a
series of polynomial and primitive HE operations such as
bootstrapping and key switching. Through profiling with
the callgrind tool, we observe that the execution time of
all 2-input encrypted logic gates is completely dominated
by bootstrapping, which is responsible for 99.99% of the
latency of the gate operation. The remaining 0.01% percent
consists of linear operations between ciphertexts, such as
polynomial addition and subtraction. On the other hand, the
NOT gate is composed entirely of linear operations as it does
not require bootstrapping. Lastly, bootstrapping composes
98.6% of the execution time of the homomorphic 2:1 MUX,
with the remaining time dedicated to linear operations.

For the bootstrapping operation itself, we observe that
70% of the runtime consists of forward and inverse FFT
operations, which are utilized for efficient, asymptotically
faster polynomial multiplication. Likewise, 12.5% of the
execution time is spent doing linear operations, and the
remaining time is dedicated to miscellaneous functions,
such as memory-related operations. Notably, Juliet sup-
ports encrypted computation on GPU platforms, which can
greatly improve the speed of certain homomorphic oper-
ations. We utilize functional units constructed using the
cuFHE library [23]. Since cuFHE lacks native support for
encrypted multiplexer gates, we have also expanded the
library to incorporate this functionality. The two primary
challenges related to GPU acceleration are: (a) exploiting
the parallelism in each functional unit to achieve high GPU
utilization, and (b) optimizing ciphertext transfers between
the host running Juliet’s execution engine and the GPU
accelerator. As such, our design considerations for GPU
functional units are substantially different than for CPU
implementations, and the construction of both our GPU and
CPU functional units is presented in Section 4.

3.2 Juliet I/O: Communicating with Users

Users can upload inputs to the execution engine in two
ways: the public tape and the private tape. The public
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Execution Engine

Parse JAL Program
Evaluate Plaintext Ops

Public/Private Tapes

JAL Program

Evaluation Key

Decryption Engine

Homomorphic
Functional Units

Evaluate Encrypted Ops

Ciphertext & Plaintext
MemoryClient Cloud

IPC

Output Ciphertext(s)

Fig. 1. Juliet Framework: The user supplies the cloud with a set of instructions written in the Juliet Assembly Language (JAL) along with an
evaluation key (which is necessary to carry out the fully homomorphic operations) and two tapes containing non-sensitive data as well as encrypted
data for use with the uploaded program. After successful evaluation, the cloud sends the resulting ciphertexts back to the user for decryption. The
thick arrows represent transferring ciphertext while the thin arrows represent control signals and small data transfers (in the order of tens of bytes).

tape consists of plaintext constants that will be used in the
Juliet program and each value is read sequentially from
the beginning of the tape to the end. In effect, when a
load from the public tape instruction is issued, the next tape
value is popped into a processing queue. To use these
constants in computations involving encrypted data, they
must be encoded first. Unlike regular encryption of sensitive
data, instead, constants can be encoded with a “constant
gate” operation and are treated as “trivial” ciphertexts. The
underlying constants encoded by these special ciphertexts
are not private and no noise is injected during the encoding
process. Thus, all data placed in the public tape should be
assumed to be readily accessible by all parties. We remark
that non-sensitive data should always be loaded in the
public tape, as mixed operations between public data and
secure ciphertexts are slightly cheaper than operations only
between ciphertexts and result in far less communication
overhead as these values can be transmitted to the cloud
in plaintext form. Additionally, this mechanism allows the
cloud to load its own plaintext inputs into the program.

The private tape is read in the same way as the public
tape (i.e., it behaves like a read-only queue). The key dif-
ference here is that the data stored in the private tape are
not the encrypted values themselves, but pointers to the
actual encryptions stored in Juliet’s ciphertext memory. In
this case, each memory location corresponds to a ciphertext
vector whose size is aligned to Juliet’s configured wordsize.
For instance, if the processor wordsize is 16, the ciphertext
memory unit comprises vectors of 16 TFHE ciphertexts
(each encrypting one bit of the word), which amounts to
a storage size of approximately 2.2 × 16 = 35.2 kilobytes
per encrypted word at 80 bits of FHE security. Then, as soon
as the computation terminates, the cloud returns the output
ciphertexts to the client for decryption.

3.3 Juliet’s Heterogeneous Processor Design
A design for an encrypted processor poses unique chal-
lenges and requires additional considerations such as mem-
ory systems for large, kilobyte-sized ciphertexts, merging
both plaintext and encrypted operations for efficient eval-
uation, and dealing with the termination problem that is
unique to encrypted computation [24]. Contrary to prior
works, we propose the first dedicated heterogeneous pro-
cessor architecture (Figure 2) that can support both FHE
computation as well as computation on plaintext values
while running efficiently on modern hardware.

The intuition behind supporting plaintext operations is
that, in many cases, non-sensitive values will eventually
be mixed with sensitive encrypted values. Without plain-
text support, all operations will need to be carried out
in the encrypted domain, regardless of the sensitivity of
the data. Conducting expensive HE operations on public
data can increase latency and communication overhead. To
increase efficiency, these values should only be encoded
as ciphertexts when they are scheduled in a computation
with an encrypted value. Hence, non-sensitive values can
be processed and modified with fast plaintext operations
before encryption. Therefore, we incorporate two ALUs in
our design, where the operands of the plaintext ALU are
aligned to the chosen wordsize K , and the operands of the
encrypted ALU are vectors composed of K ciphertexts.

Our processor adopts a Harvard architecture where data
and instruction memories use different address spaces and
features two distinct data memory regions: a large en-
crypted memory bank and a memory for plaintext values.
The encrypted region is used to store ciphertext vectors of
size K while the plaintext region stores integer entries of K
bits. Juliet also features a register file that can store plaintext
values directly, as well as ciphertexts through indirection.
Specifically, indirection is beneficial so that our registers
are aligned to K bits in all cases; when needed to refer to
ciphertext data, the registers store a pointer to a ciphertext
vector stored in the encrypted memory region.

Memory operations are facilitated by two load-store
units (LSUs): a plaintext LSU and an encrypted vector LSU.
The plaintext LSU stores and loads K-bit data to and from
the plaintext memory. On the other hand, the encrypted
vector LSU receives pointers to ciphertext vectors from the
registers, and processes inputs and outputs of the encrypted
ALU. The input addresses are used to locate and then
load ciphertext vectors directly into an encrypted vector
bank whose entries correspond to the ciphertext inputs of
the ALU operations (Figure 2). When the encrypted ALU
finishes an operation, the output ciphertext vector is sent
back to the encrypted vector LSU, which stores the output
as a new entry in the encrypted memory and also stores the
pointer to the entry in the destination register.

Next, we present the instructions supported by Juliet,
along with the corresponding ALU functional units for each
instruction, targeting CPU and GPU backends.
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Fig. 2. Processor Design: Juliet incorporates a dedicated ALU and memory system for encrypted data. Plaintext operations are fully supported for
computation on non-sensitive values and can interface seamlessly with encrypted values after trivial encryption with an evaluation key.

4 JULIET ASSEMBLY LANGUAGE

The Juliet Assembly Language (JAL) instructions are di-
vided into two categories: operations on plaintext data and
operations on encrypted data. Juliet supports a robust set of
functionally complete operations in both domains as shown
in Table 1. An e/p in the Domain column means that the
instruction has both an encrypted and plaintext variant,
whereas a p or e indicates if the instruction is only possible
on plaintext data or encrypted data, respectively. Logical
and arithmetic operations on plaintext data are carried out
in the plaintext ALU, while store and load operations use
the LSU to interface with plaintext memory; due to the
small size of the values (relative to encrypted values), the
data itself can be held directly in the registers. In the next
subsections, we discuss the more complex case of encrypted
logical, relational and arithmetic operations, followed by the
encrypted multiplexer operation that helps resolve runtime
decisions, as well as the intricacies of GPU acceleration.

4.1 Encrypted Logical and Relational Operations

Our encrypted ALU implements operations as a netlist of
homomorphic gates using the TFHE library on a target
device (i.e., CPU or GPU). For encrypted bitwise operations
in Table 1, Juliet invokes the homomorphic gate operations
directly to operate over each encrypted bit of the operands.
With word sizes greater than a single bit, this entails exe-
cuting K gate evaluations in parallel. We remark that shifts
and rotations are notoriously noisy operations when using
other FHE libraries that work on encrypted integers instead
of bits; for example, HElib’s standard shifting operations
require the use of several automorphisms and key-switching
operations [25], and can accumulate more noise than a
multiplication between two ciphertexts (depending on the
FHE parameters used). Conversely, shifts and rotations on
encrypted data are essentially free with TFHE because it
represents integers as vectors of bit encryptions. Since these
ciphertexts are independent, shifting or rotating them is just
a matter of transforming their indices in the vector, just

like one would transform a plaintext bit array. Therefore,
no computationally expensive operations are required.

A more complex case involves relational operations such
as less-than, greater-than, and equality. All of Juliet’s rela-
tional operations utilize the same area-efficient comparator
circuit [26], which supports arbitrary word sizes through the
use of cascading. The comparator circuit has three output
wires: a less-than output, an equality output, and a greater-
than output. Only one of these wires will be asserted at
a time, indicating the relation of the magnitude of one
ciphertext to another. “Less than or equal” or “greater than
or equal” can be intuitively achieved by ORing the less
than or greater than signal with the equality signal. Lastly,
to align the desired output signal to the word size, Juliet
replicates the encrypted single bit value K times (i.e., with
a wordsize of K = 8, an output of encrypted “1” becomes
ciphertext vector “11111111”).

4.2 Encrypted Arithmetic Operations
The homomorphic arithmetic operations provided by Juliet
for a CPU target include multiplication, addition, and sub-
traction circuits implemented using TFHE gates, and all
circuits employ cascading techniques to support arbitrary
word sizes. It is crucial that the underlying building blocks
of these circuits (full adders, full subtractors, and 1-bit com-
parators) are optimized in order to get good performance
out of the larger compound circuits. Towards that end,
we opted for the designs depicted in Figure 3, and we
remark that the motivation behind our full adder design
stems from the fact that TFHE can execute a multiplexer
circuit with the cost of only two bootstraps, as mentioned
in Section 2. Therefore, this full adder design requires only
four bootstrap operations total, as opposed to a standard
full adder design (with two XOR gates, two AND gates,
and an OR gate) that requires five bootstraps. Since boot-
strapping remains the primary computational bottleneck
in FHE operations, our MUX-based full adder evaluates
faster in the encrypted domain, especially when used within
larger, multi-bit adders. Specifically, the MUX-based full
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TABLE 1
Juliet’s ISA encompasses a set of operations on both encrypted and
unencrypted data and can be used to develop any algorithm. Here,
ri, rj , rk, rl represent registers, A represents either a register or an
immediate which can hold data in the plaintext domain and a register
holding a pointer to ciphertext data in the encrypted domain, while I

represents an immediate that cannot be encrypted. The Domain
column specifies whether the operation is supported in the plaintext

domain (p), in the encrypted domain (e) or both (e/p).

T Domain Op. Registers Description

B
it

w
is

e

e/p and ri rj A ri = rj &A
e/p nand ri rj A ri =∼ (rj &A)
e/p or ri rj A ri = rj |A
e/p nor ri rj A ri =∼ (rj |A)
e/p xor ri rj A ri = rj ⊕A
e/p xnor ri rj A ri =∼ (rj ⊕A)
e/p not ri A ri =∼ A
e mux ri rj rk rl ri = rj × rl + rk× ∼ rl

A
ri

th
m

et
ic

e/p add ri rj A ri = rj +A
e/p sub ri rj A ri = rj −A
e/p mul ri rj A ri = rj ×A, keep LSB
p div ri rj A ri = rj ÷A (unsigned)

e/p mod ri rj I ri = rj%I (unsigned)
e const ri A ri = Encrypt(A)
e/p sll ri rj I ri = rj<<I
e/p srl ri rj I ri = rj>>I
p mov ri A ri = A
p cmov ri rj A ri = A (if rj == 1)

C
M

P
&

Ju
m

p

p jmp I Set PC to I
p cjmp ri I Set PC to I (if ri == 1)
e/p seq ri rj A ri = (rj == A)
e/p sgt ri rj A ri = (rj > A) (unsigned)
e/p slt ri rj A ri = (rj < A) (unsigned)
e/p sge ri rj A ri = (rj ≥ A) (unsigned)
e/p sle ri rj A ri = (rj ≤ A) (unsigned)

L/
S p sw ri I(rj) mem[I + rj ] = ri

p lw ri I(rj) ri = mem[I + rj ]

I/
O

e/p read ri Consume word from tape
p print ri Output ri to stream

e/p ret ri Return ri
e/p cret ri rj Return ri (if rj == 1)

adder exhibits a latency reduction of 15% relative to the
baseline. When used as the building block of a 64-bit adder,
it outperforms the baseline approach by 14% and a 64-bit
multiplier utilizing the MUX-based variant is 18% faster
than the multiplier using a standard full adder. Our full
subtractor follows the same paradigm, with the inclusion of
an inverter, which can be evaluated without bootstrapping
and introduces negligible overhead.

Addition and subtraction use the same circuit which
takes a ripple carry approach. We chose a ripple carry design
for the CPU backend, as opposed to carry look-ahead or
other fast adders, because it uses the least number of gate
evaluations and therefore results in the lowest latency in
the encrypted domain without parallelism. Multiplication
involves computing partial products by left shifting the
bits of the first operand K times to produce K individual
ciphertext arrays and then ANDing each with its correspond-
ing bit of the second operand. This way, the result is K
arrays (each of size K) that encode partial products where
the corresponding bit of the second operand is encrypted
“1” and encryptions of zero otherwise. Lastly, the partial
products are summed using K invocations of the adder.

(c) 1-bit Comparator

(a) Full Adder (b) Full Subtractor

(A > B)in

(A < B)in

A

(A == B)in

B

(A > B)out

(A == B)out

(A < B)out

B

S

Cout

0

1

A

Cin

D

Bout

0

1

A

Bin

B

Fig. 3. Indivisible Circuits: By substituting logic gates with a MUX,
the full adder and subtractor can successfully evaluate with only four
bootstraps. Compared to a standard adder/subtractor design, these
designs execute faster homomorphically because they require one fewer
bootstrap. Together with the 1-bit comparator, these units serve as the
basic building blocks for Juliet’s functional units.

4.3 JAL Encrypted Multiplexing
Making runtime decisions using ciphertexts is an important
constraint when computing on encrypted data [24]. Specif-
ically, branching on encrypted data is not possible as it
would reveal information about the control value encoded
in a ciphertext if the cloud was permitted to actually resolve
the branch outcome. As it stands, the best solution to this
problem is to use multiplexing techniques to evaluate both
branches and finally choose the output of the correct branch
with an encrypted selection bit [24]. While this approach
incurs higher complexity for applications such as sorting
and searching over encrypted data, it is quite powerful
and remains the only viable solution to making decisions
in the encrypted domain without leaking information or
involving the user. The encrypted multiplexing operation
in JAL takes four arguments: the destination register, two
source registers pointing to the encrypted data inputs of
the multiplexer, and a third source register pointing to the
encrypted selection bit. Depending on the value of the
selection bit, the corresponding source ciphertext will be
propagated to the destination.

4.4 GPU-accelerated Functional Units
In terms of logical units, our GPU implementation follows
the same methodology as the CPU: TFHE logic gate op-
erations computed across all operand bits. In this case,
however, these gates are evaluated concurrently using all
available GPU streaming multiprocessors (SMs). Relational
functional units remain identical to the CPU counterparts
with the exception of the equality circuit. Instead of evaluat-
ing equality using a sequence of cascaded comparators (that
limit parallelism due to data dependencies), we adopt K 1-
bit comparators that evaluate in parallel only the necessary
logic to determine the equality signal, and then perform
encrypted AND operations between the K outputs to get
the final result. This circuit design allows Juliet to exploit as
many SMs as possible to carry out this instruction.

The circuit that deviates the most from its CPU equiva-
lent is our adder design. To effectively exploit GPU paral-
lelism, it is more beneficial to employ wider circuits with a
shorter critical path instead of the narrow carry ripple adder,
which contains the minimum number of gate evaluations,
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Fig. 4. Kogge-Stone Adder: This design for an 8-bit adder is used
to compute the carry for each step of the adder. To retrieve the sum
(not depicted), one simply needs to compute an XOR operation with the
generated output carry and the propagate signal generated in the first
stage of the adder.
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Fig. 5. 16-bit Adder Circuit Topologies: The ripple carry adder em-
ployed as a CPU-encrypted functional unit exhibits a low number of
gates but a much longer critical path. On the other hand, the Kogge-
Stone adder consists of more gates, but wider circuit levels (and thus
more parallelism) and a shorter critical path. For massively parallel
devices like GPUs, the Kogge-Stone adder is a better choice.

yet is not readily parallelizable. Instead, we opt for an adder
that will minimize the critical path as well as allow for
maximal parallel execution, and we adopt a Kogge-Stone
carry look-ahead design (Figure 4). A comparison of the
circuit topologies of the ripple carry versus the Kogge-
Stone adder is depicted in Figure 5. The critical path is
nearly 2× shorter for the Kogge-Stone adder and more
gates can be evaluated concurrently compared to the ripple
carry adder, which has many thin circuit levels with few
opportunities for parallelization. Indeed, the Kogge-Stone
adder outperforms a GPU implementation of the ripple
carry design by approximately 38%. For a wordsize of 16
bits, this adder outperforms the CPU ripple carry design
by nearly 5× even though the total number of gates is
greater; this is due to the large width of the early stages
of the adder, which can achieve high utilization on a GPU.
This design is also employed for subtraction by adding one
operand to the two’s complement of the other, which entails
a simple inversion followed by an increment operation.
Lastly, our GPU multiplier generates partial products in
parallel through the use of shifts and AND operations and
then sums the partial products using multiple invocations
of the Kogge-Stone adder.

5 JULIET FRONT-END

In this section, we describe the front-end of the Juliet
framework that comprises a Java-like high-level language
called eJava, and a compiler to translate eJava code to JAL
instructions. The primary motivation for eJava is two-fold:
allow programmers to clearly express intent with respect to
the sensitivity of data and omit language features that are

non-compliant with encrypted data. For example, a program
written in the standard Java language does not indicate
which variables should be private, resulting in ambiguity
as to whether or not it needs to be encrypted. Encrypting
non-sensitive data will result in sub-optimal FHE evalua-
tion. Additionally, language features such as loops with an
encrypted index and hash maps with encrypted keys are
incompatible with encrypted computation, as the decryp-
tion key is not shared. Overall, eJava is a self-contained
language that is tailored to encrypted computation and
enables expressing arbitrary programs that involve both
encrypted and unencrypted data types. In the following
sections, we elaborate on our design choices for eJava and
the JAL compiler.

5.1 Design of eJava Language
The primary goal of introducing a high-level language is
to simplify the development of JAL programs. Therefore,
we created a strongly typed object-oriented language like
Java that is judiciously designed for encrypted computation.
In eJava, classes may contain fields and methods that have
arguments and return types of basic or other class types.
The new operator calls a default void constructor. Moreover,
eJava supports inheritance and its methods can be defined
in a subclass if that subclass has the same return type and
arguments. The fields in the derived class and in the base
class are different fields, even if they have the same names;
however, eJava does not offer support for inner classes and
static methods or fields. The this identifier can be used to
access the methods of a class from another method of the
same class. By default, all methods are public and all fields
are protected. Thus, a method of a class cannot access fields
of another class, except if it is inherited from that class. Local
variables can be defined at the beginning of a method, and if
they have the same name as a class field then they shadow
that field. Finally, a eJava program begins with a special
main class that only contains the main method (i.e., public
static void main(String[] args)), and afterward it
may contain other classes that have fields and methods.

5.1.1 Operations in the Encrypted Domain
The basic types of eJava are int for K-bit integers, where K
is the word size, int[] for arrays of integers, and boolean
for logical values. For the encrypted domain, eJava sup-
ports EncInt for encrypted integers and EncInt[] for
arrays of encrypted integers. The syntax and functionality
of encrypted operations closely mimics that of the plaintext
equivalent, simplifying development. Operations between
the encrypted and unencrypted domains are possible by
first encoding the variables from the unencrypted domain.
Since the computation is outsourced to a third party that
only possesses the evaluation key (and not the decryption
key), such operations involve encoding variables on the
fly as trivial ciphertexts without noise using the evaluation
key. However, initializing encrypted variables with plain-
text data, such as in Fig. 6(a), and resorting to encrypting
with the evaluation key by the untrusted third party raises
numerous concerns.

First, encrypting a sensitive value with the evaluation
key adds no noise to the generated ciphertext, so the under-
lying LWE problem becomes trivial to solve. Nevertheless,
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1 EncInt x = 7 ; / / x = enc ( 7 )
2 x *= 2 ; / / x = x * enc ( 2 )
3 return x ; / / x = enc ( 1 4 )

(a) Illegal Initialization.

1 EncInt x = PrivateTape ( ) ; / / x = enc ( ? )
2 x *= 2 ; / / x = x * enc ( 2 )
3 return x ; / / x = enc ( ? )

(b) Correct way to initialize EncInt variables.

Fig. 6. Initialization of encrypted integers.

if an FHE operation combines such a ciphertext without
noise with a noisy ciphertext (i.e., one that was encrypted
with the user’s key), the resulting ciphertext has noise
and is secure. For example, if we add a secure ciphertext
(with sufficient noise) to a trivial ciphertext (with negligi-
ble noise), then we will end up with a secure ciphertext:
Nnoisy +Nnegligible → Nnoisy .

Second, the cloud can read constants initialized in the
outsourced JAL program and perform static analysis to trace
how they affect the output of the program. For example,
in line 1 in Fig. 6(a) encrypted variable x is assigned the
encryption of constant 7; however, this is an illegal assign-
ment and a violation of our threat model since the contents
of x will be encrypted on-the-fly without noise, and the
cloud can learn meaningful information about a ciphertext.
Thus, the only way to initialize the EncInt and EncInt[]
data types in eJava is through the private tape with secure
ciphertexts that were generated offline. For instance, in line
1 Fig. 6(b), the user directly assigns a ciphertext to the
encrypted variable x through the private tape. Since this
ciphertext has been generated by the user, the cloud server
has no way of inferring any information about it.

5.1.2 Inputs from Public and Private Tapes
In more detail, eJava supports both public and private in-
puts via two read-only tapes. These built-in methods have a
one-to-one correspondence with JAL instructions: the public
tape can be read sequentially using the pread instruction,
while for the private tape, Juliet uses the eread instruction.
In the public tape case, the next word (K-bit integer) from
the tape is consumed, while when the private tape is used as
input, a pointer to the next ciphertext array is read. We note
that the input ciphertext arrays pointed to by the private
tape pointers are pre-loaded into the ciphertext memory by
the user, who uploads the memory structure to the cloud for
further evaluation.

5.2 eJava Compiler for Juliet
We complement Juliet with a custom compiler to translate
eJava code into optimized JAL assembly instructions.

5.2.1 Type Checking
The first step in the compilation process is type checking by
statically analyzing the input program and verifying its type
safety. Our compiler performs one first pass of the source
file to gather the defined classes and then another pass to
generate a symbol table with all the classes, fields, meth-
ods, and local variables [27]. In a third pass, the compiler
confirms that all data types of expressions and variables are
consistent. As already mentioned, due to threat model con-
straints (Section 5.1.1), our compiler does not allow direct

1 EncInt x = PrivateTape ( ) ; / / x = enc ( ? )
2 EncInt re s = PrivateTape ( ) ; / / r e s = enc ( ? )
3 i f ( x == 0) { / / Cannot branch
4 re s += 7 ; / / r e s = r e s + enc ( 7 ) ;
5 } e l s e {
6 re s += 1 3 ; / / r e s = r e s + enc ( 7 ) ;
7 }
8 return re s ; / / x = enc ( ? )

(a) Type-checking error: Illegal branch on en-
crypted data.

1 EncInt x = PrivateTape ( ) ; / / x = enc ( ? )
2 EncInt re s = PrivateTape ( ) ; / / r e s = enc ( ? )
3 EncInt s e l = x == 0 ; / / enc ( 0 ) / enc ( 1 )
4 re s = s e l * ( r es +7) + (1 − s e l ) * ( r es +13) ;
5 re turn re s ; / / x = enc ( ? )

(b) Correct way to check for encrypted equality in
eJava.

1 EncInt x = PrivateTape ( ) ; / / x = enc ( ? )
2 EncInt re s = PrivateTape ( ) ; / / r e s = enc ( ? )
3 re s = ( x == 0) ? ( re s + 7) : ( re s + 13) ;
4 re turn re s ; / / x = enc ( ? )

(c) Encrypted equality using ternary operators.

1 eread t0 / / x
2 eread t1 / / r e s
3 econst t2 , 0
4 eseq t2 , t0 , t 2 / / t2 = x == enc ( 0 )
5 econst t3 , 7
6 eadd t3 , t1 , t 3 / / t3 = r e s + enc ( 7 )
7 econst t4 , 13
8 eadd t4 , t1 , t 4 / / t4 = r e s + enc ( 1 4 )
9 emux res , t2 , t3 , t 4

10 e r e t t1 / / r e s

(d) JAL assembly for (c).

Fig. 7. eJava example for multiplexing based on encrypted data. (a)
Example of illegal branching on encrypted data; (b) Same functionality
as in (a) but without branching on encrypted data; (c) Same functionality
as in (b) using a ternary operator; (d) JAL assembly code for (c).

assignment of constants in variables of encrypted type (like
in Fig. 6(a)). Additionally, operations between encrypted
and unencrypted variables are permitted if the destination
is also declared as encrypted, as in Fig. 6(b). Lastly, our
compiler also throws an error if an answer function is
missing, as this is required to halt the abstract machine.

An important consideration that our type-checking sys-
tem has to take into account is the inability to make run-
time decisions based on encrypted data. For instance, our
compiler throws an exception if the source code includes
branches based on encrypted values, like in Fig. 7(a). It is
the programmers’ responsibility to express such statements
obliviously (as in Fig. 7(b) lines 3-4), or using a ternary
operator that directly invokes the MUX JAL instruction (as
in Fig. 7(c)). The corresponding JAL assembly for Fig. 7(c)
is presented in Fig. 7(d). This aspect of eJava is the most
notable deviation from standard high-level languages, but
is an inherent feature of encrypted computation. We note
that most branches can be readily resolved with a series of
multiplexers.

5.2.2 JAL Assembly Generation
After the type safety of the eJava source program has been
verified, our compiler parses the high-level code, generates
an intermediate representation (IR), and performs various
optimizations. First, the eJava compiler runs a static anal-
ysis phase to identify constant- and copy-propagation op-
timizations, as well as live range analysis and dead code
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elimination [27]. These optimizations significantly reduce
the size of the IR as they remove intermediate variables and
unused code blocks. Our compiler continues performing
static analysis and other optimizations until a threshold is
reached so that two different iterations result in the same
output (i.e., no further optimizations are possible). Finally,
the eJava compiler maps the virtual registers to a prede-
fined number of registers that the Juliet abstract machine
supports by utilizing graph coloring techniques [28], and
the optimized JAL assembly is generated.

6 EXPERIMENTAL EVALUATIONS

To encompass a wide range of use cases for encrypted
computation, we employ the TERMinator suite [24], [29],
which is a set of benchmarks designed for encrypted archi-
tectures. In order to integrate TERMinator with Juliet, we
made several modifications. First, the TERMinator bench-
marks were designed for encrypted computation based on
partially homomorphic encryption and employed an obliv-
ious multiplexing function (dubbed G); the latter used a
control input to select between an encrypted input or an
encryption of zero. Therefore, in this work, we employ FHE
multiplexers instead of G function calls and ported selected
microbenchmarks to eJava to evaluate core operations on
encrypted data with Juliet.

Moreover, we performed experiments by evaluating two
block ciphers in the encrypted domain, namely SIMON and
SPECK [30]. These algorithms are packed with binary and bit
manipulation operations that help demonstrate important
aspects of our abstract machine and the benefits of the
underlying TFHE scheme. In addition, we evaluate Juliet
using the multiplication-heavy Sieve of Eratosthenes (SoE)
algorithm, as well as the computationally intensive logistic
regression (LR) inference, which corresponds to realistic
machine learning. We remark that while many prior HE
frameworks include proof-of-concept implementations of
basic machine learning applications, they almost exclusively
employ leveled HE. Even though this approach can help the
evaluation of shallow circuits, it quickly becomes infeasible
for the deeper circuits that need complex applications and
high accuracy. Therefore, in the case of LR, the use of
FHE (instead of leveled HE) allows us to compute a more
accurate approximation of the sigmoid function.

All CPU-based experiments were executed on an Ama-
zon AWS r5.12xlarge instance, which assumed the role of
the cloud server (Fig. 1), and was used to exclusively run
the FHE operations using our execution engine; all key gen-
eration, encryption, and decryption operations were done
offline on a laptop (i.e., the client machine). For our GPU-
based evaluation, the cloud server used an NVIDIA Tesla
M60 GPU hosted on an AWS g3.8xlarge instance.1

6.1 Evaluation using Microbenchmarks

The class of microbenchmarks in TERMinator comprises a
set of applications that involve primarily encrypted addi-
tions or multiplications (or both). The Fibonacci benchmark

1. The Juliet framework is open-sourced at https://github.com/
TrustworthyComputing/Juliet, while our HEJava compiler is available
at https://github.com/TrustworthyComputing/HEJava-compiler.
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Fig. 8. Microbenchmarks: This set of programs evaluates the perfor-
mance of core FHE operations in Juliet, namely addition, multiplication,
multiplexing, and encrypted equality. To showcase the power of native
MUX gates, we also include a Fibonacci benchmark that implements
multiplexing via multiplication and addition (instead of a MUX).

consists of many addition operations and computes the
N th Fibonacci number where N is an encrypted value.
Likewise, the factorial benchmark computes N ! where N
is an encrypted input. In both programs, the cloud has
no knowledge of the returned output since a larger range
of values is computed first, and then the N th value is
selected homomorphically through either multiplication or
multiplexing. For our experiments, the eJava program com-
putes the first 20 factorials and Fibonacci numbers, and the
encrypted input N selects a random value from 1 to 20.
Our third microbenchmark is private information retrieval
(PIR), which simulates an FHE database with 50 entries
and performs a search operation using encrypted equality
checks. Due to the termination problem, the PIR program
cannot exit early and must visit every entry in the database
while searching for a match. After all equality checks are
computed, a multiplexing operation selects the final result.

In Fig. 8 we report the evaluation times of our mi-
crobenchmarks on a CPU using a wordsize from 8 to 64 bits.
As expected, the factorial benchmark is slower and scales
worse than the Fibonacci benchmark due to the large mul-
tiplication circuits that require far more gates for increasing
word sizes, while our PIR benchmark scales linearly with
increasing word sizes. Moreover, a variant of the Fibonacci
benchmark that relies on an arithmetic approximation of
a multiplexer (like Figure 7(b), line 4) is far slower than
its MUX-based counterpart. This approximation requires a
large number of multiplication operations on secure cipher-
texts and is therefore computationally expensive. At a 64-
bit wordsize, this inefficient Fibonacci implementation takes
approximately 57.5 minutes to evaluate, which is over an
order of magnitude slower than the implementation that
employs MUXes to enable selection. At a high level, this
radical difference in latency showcases that binary opera-
tions on ciphertext arrays are much faster than arithmetic
operations in the TFHE cryptosystem.

6.2 Evaluation using Real-Life Benchmarks
Simon/Speck: Compared to our microbenchmarks, the SI-
MON and SPECK block ciphers, the Sieve of Eratosthenes,
and the logistic regression inference are far more complex
programs and constitute realistic workloads on encrypted
data. While the block ciphers are predominantly composed
of bitwise operations (and modular addition in the case of
SPECK), the Sieve of Eratosthenes and the logistic regression
inference are multiplication intensive. These benchmarks
demonstrate the scalability of Juliet and, in the case of the
block ciphers, they also enable an exciting application of

https://github.com/TrustworthyComputing/Juliet
https://github.com/TrustworthyComputing/Juliet
https://github.com/TrustworthyComputing/HEJava-compiler


IEEE TRANSACTIONS ON COMPUTERS 11

TABLE 2
GPU Acceleration: This table outlines benchmarks configured with a
wordsize of 16 bits. In each case, the GPU implementation of Juliet’s

encrypted ALU is faster than the CPU-based version. Logical
operations, which are completely parallel, run efficiently on the GPU,
hence the fast evaluation time of the SIMON circuit, which achieves a

speedup of 8.6× compared to the CPU implementation.

Benchmark CPU Time (sec.) GPU Time (sec.) Speedup

SPECK 69.8 19.4 3.6×
SIMON 60.9 7.1 8.58×

LR Inference 273.1 260.7 1.05×
Fib. 364 329.5 1.10×

Fib. (MUX) 99.1 77.2 1.28×
Factorial 317 284.7 1.11×

Sieve of Erat. 245.5 230.2 1.07×
PIR 187 153.6 1.22×

outsourced homomorphic computation called “transcipher-
ing” or “scheme hopping” [31], [32], which enables efficient
compression of ciphertexts and can drastically reduce com-
munication overheads between client and server.

SoE: The Sieve of Eratosthenes is used to find all prime
numbers in a range. Our benchmark begins with reading an
array of encryptions of zero of length equal to the desired
range (in our case, we compute all prime numbers between
1 and 20). At runtime, when a prime is detected at a given
index, the corresponding encryption of zero becomes an
encryption of one. Finally, to generate the encrypted list of
the primes, all array values are multiplied by their index.

LR: The logistic regression algorithm is used to classify
inputs, such as images or text data, into different classes.
For our implementation, we employ the Iris dataset [33],
which classifies flowers into one of three species of irises.
For our experiments, we restrict the dataset to two species
and perform training with the dataset offline.

For encrypted evaluation, we upload the ciphertexts
encoding a flower’s characteristics to the cloud, which per-
forms LR inference and returns ciphertexts corresponding
to the probabilities that input belongs to each possible class.
The workhorse of LR and a major challenge for FHE com-
putation is the sigmoid function (specifically, the standard
logistic function), which is defined as f(x) = 1/(1 + e−x).
To evaluate this function homomorphically, we employ a
Maclaurin series approximation and compute the first three
terms as f(x) = 1/2 + x/4 − x3/48 + . . .. In addition, to
convert all of the terms into integers, we multiply both sides
of the equation by 48. This presents a reasonable trade-
off between accuracy and performance, as the execution
time scales with the number of terms evaluated. After the
inference is completed and the cloud returns two encrypted
probabilities (one for each class), the user decrypts each
one and divides by 48. Overall, our homomorphic inference
program is capable of classifying two flowers at a time.

Matrix Multiplication: This benchmark is a core operation
for various machine learning and signal processing applica-
tions. Due to the high number of multiplications required
(n3 for a product between two square matrices), this bench-
mark is expensive to compute over Boolean ciphertexts.
Relative to strictly plaintext computation running on Juliet,
we find that the average cost of encryption is roughly 3.8
orders of magnitude across the three matrix sizes, which is
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Fig. 9. Square Matrix Multiplication: We utilize a word size of 16 and
note that this benchmark is multiplication-intensive, resulting in higher
latencies due to the large size of 16-bit multiplier circuits.

consistent with what related works report [15], [34]. This
performance differential can be attributed to the fact that
encrypted operations take the form of high-degree polyno-
mial arithmetic instead of operations across small scalars.
Additionally, the functional bootstrapping step in TFHE is
measured to consume the vast majority of execution time
of the overall matrix multiplication benchmarks (> 90%),
while the remaining cost is attributed to interprocess com-
munication and linear polynomial operations.

Discussion: Table 2 provides a comparison of the evaluation
of Juliet using a CPU-based and a GPU-based implemen-
tation. Both block ciphers were configured with the same
key size (64 bits) and block size (32 bits) and were used to
“decrypt” a single ciphertext block in FHE. A wordsize of
16 was chosen since both ciphers split the ciphertext block
in half during decryption. For our results, we observe that
SIMON is faster than SPECK. This is expected as SIMON is
composed entirely of fast bitwise operations, while SPECK
contains both addition operations (which require Boolean
adder circuits) and bitwise operations. Thus, since these
ciphers have many logical operations that can be read-
ily parallelized, the GPU implementation excels at both.
Overall, we find that the GPU implementation can achieve
a much higher gate throughput than the CPU backend.
However, in order to take advantage of the heightened
throughput, the circuits need to be sufficiently wide. When
only a small number of gates can be evaluated in parallel,
the GPU utilization drops and the data transfer costs begin
to dominate. As such, we note that programs that utilize
large word-sizes are well-suited for the GPU backend as the
resulting circuits are typically wide. The high speedup of
Simon 64/96 (32-bit word size) and Simon 128/128 (64-bit
word size) depicted in Figure 10 emphasize this point.

Aside from matrix multiplication, our LR inference and
SoE benchmarks exhibit the longest execution times because
they are multiplication-intensive. LR requires 20 homomor-
phic multiplications (12 for the sigmoid approximation and
8 for multiplying the trained coefficients and inputs), while
SoE requires 20 homomorphic multiplications in order to
compute all primes up to the number 20 (one for each num-
ber from 1 to 20). The small discrepancy in the execution
times can be attributed to the fact that LR also requires
several homomorphic addition and subtraction operations.

6.3 Experimental Comparisons with Previous Works
We compare Juliet with three FHE frameworks targeting
TFHE that are Turing complete (i.e., geared towards general
computation) and flexible so that the whole framework does
not have to be recompiled to evaluate new programs. These
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TABLE 3
Comparisons of FHE computation frameworks in terms of plaintext type (integer, Boolean, or fixed point), support for mixed operations, whether
the implementation is Turing complete, offline computation without user involvement, compilation requirements, bootstrapping efficiency, whether

memory accesses are constant-time or scale with memory size, semantic security, and lastly GPU support.

Framework Type Fast
Bootstrap†

Mixed
Ops‡

Turing
Complete Offline§ Flexibility¶ GPU

Support
Memory
Access

Semantic
Security

ALCHEMY [35] Int Const.
Cingulata [36] Bin Const.

E3 [37] Int, Bin, FP Const.
EVA [38] FP Const.

Google Transpiler [39] Bin Const.
Juliet (this work) Bin Const.

Porcupine [40] Int Const.
RAMPARTS [41] Int Const.

Romeo [32] Bin Const.
T2 [29] Int, Bin, FP Const.

VSP [42] Bin Exp.*

† Fast bootstrap refers to the bootstrapping efficiency of the underlying HE scheme. indicates slow bootstrapping, indicates that some
of the supported schemes have fast bootstrapping, while indicates fast bootstrapping.

‡ Mixed Ops refers to the capability of mixing plaintext and encrypted computation.
§ Offline indicates whether or not the user needs to participate in the computation in any capacity.
¶ A framework is flexible if it can support different FHE applications without needing to recompile everything.
* The size of the encrypted memory in the open-source implementation is fixed. The access costs scales exponentially.
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Fig. 10. Comparisons between Juliet, T2, E3, and VSP. All frameworks
were configured using TFHE at 80 bits of security. Juliet with a GPU-
based ALU is at least an order of magnitude faster than all CPU-based
frameworks. The reported VSP timings exclude (a) downstream network
delays (incurred when the server sends a copy of the entire encrypted
memory to the user), (b) the user’s decryption time of the received
ciphertexts, and (c) the upstream network delay for the plaintext termi-
nation response to the server. Dashed lines indicate expected timings;
for instance, VSP is only configured to use 16-bit registers and can not
readily support the word sizes required for larger SIMON variants.

frameworks include T2 [29], E3 [37], and VSP [42]. We
selected the SIMON cipher as the underlying application
for comparisons since it has strictly bitwise operations and
is naturally suited to TFHE. In Fig. 10, we present the
performance results for each framework with increasing
block and key sizes, which also increases the number of
rounds required to evaluate SIMON.

All comparison experiments were run on a g3.8xlarge
AWS server. In certain experiments, the transparent lines
indicate expected timings; for example, VSP was only able
to correctly evaluate SIMON with a 16-bit wordsize (which
is amenable to SIMON 32/64). Meanwhile, E3 was unable to
compile SIMON 128/128 in less than an hour, so we report
its expected performance based on the trend from smaller
block sizes. Additionally, we note that while VSP reports
GPU support, is only configured to run on two specific
GPUs (conversely, Juliet is compatible with any arbitrary
NVIDIA GPU). Thus, with the NVIDIA M60 GPU on our
AWS server, VSP was unable to evaluate SIMON. Instead,
we report the expected timings based on the clock cycle
cost of 1.7 seconds, as reported by the authors for one V100

GPU [42]. Moreover, the reported times for VSP do not
include the communication overhead incurred after each
clock cycle (as required by the VSP protocol). Lastly, we
remark that we allowed all frameworks to use the available
hardware resources of the host, but we did not modify them
to add any parallelization if the framework did not naturally
support it (in this case, T2 and E3). Overall, we observe
that Juliet is the fastest framework using a CPU backend,
while for the GPU backend, it is approximately an order of
magnitude faster than other CPU-based frameworks, and
nearly 5× faster than VSP on a single GPU. Additionally,
for SIMON 32/64, Juliet achieves 62 cycles per second on
a single GPU, while VSP achieves 0.8 cycles per second
in its fastest configuration with 8 V100 GPUs (which also
have a compute capability of 7.0 versus the M60’s 5.2 and
4× as many SMs). We conjecture that this performance
differential is mainly attributed to the significant cost of
VSP’s encrypted memory accesses, which requires visiting
all memory locations for each read/write.

7 RELATED WORK

In recent years, many works have focused on making FHE
viable outside of research circles, from both an efficiency and
usability standpoint. Previous works focusing on general
computation with FHE can be divided into two categories
depending on the type of HE circuit the underlying schemes
use: arithmetic or Boolean. In Table 3, we present our
comparisons of prior works encompassing both approaches.

Frameworks that use arithmetic circuits to evaluate al-
gorithms in the encrypted domain use an integer or fixed
point encoding for underlying plaintexts and utilize native
HE addition and multiplication operations. This category
encompasses works such as ALCHEMY [35], RAMPARTS
[41], and Porcupine [40] that introduce their own DSLs that
programmers can use to build HE applications leveraging
BFV (or a variant of BGV in the case of ALCHEMY). In
addition, EVA [38] presents an intermediate representation
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that uses the CKKS scheme (which operates over complex
numbers) implemented in the SEAL library. These solutions
typically leverage batching capabilities to pack multiple
plaintexts into a single ciphertext and allow for vector
processing. For certain types of applications that can be or-
chestrated as shallow circuits, this strategy can be beneficial;
however, the major drawback of arithmetic-based schemes
like BFV and CKKS is that the speed of bootstrapping is pro-
hibitively slow. Therefore, these schemes are typically used
in leveled HE mode and suffer from scalability issues when
faced with deep, complex algorithms as the parameters
required to support high depth will result in significantly
slow speeds. Another limitation of these schemes involves
the inability to perform practical comparison operations and
bitwise shifts in the integer or floating point domains. As
such, solutions that use solely arithmetic operations are not
Turing-complete. Juliet, on the other hand, is scalable and
Turing-complete due to the fast bootstrapping speeds of
TFHE, and native support of comparison operations.

The other primary class of HE computation, Boolean
circuits, offers key advantages compared to the arithmetic
approach. While operations such as multi-bit addition and
multiplication require several low-level HE operations, the
bootstrapping speeds are orders of magnitude faster for
Boolean circuit-based schemes (like TFHE and FHEW),
which makes them ideal for general-purpose computa-
tion. Juliet leverages this computational model to allow
the composition of arbitrary algorithms. Prior works that
also incorporate this approach include toolchains that take
VHDL or Verilog programs (or even high-level programs
converted with High-Level Synthesis), perform logic syn-
thesis to generate a netlist of Boolean gates and perform a
direct conversion into an FHE circuit. Both Romeo [32] and
Google’s Transpiler [39] are frameworks that are capable of
converting arbitrary combinational and sequential circuits
to equivalent TFHE code. Two potential limitations of these
two approaches involve the need to completely recompile
the circuit from scratch if any small change needs to be made
to the algorithm, as well as the lack of support for plaintext
operations. Because the entire program is converted to an
HE circuit, plaintext values must be encrypted on the user
side and then used for HE logic gate operations.

The VSP framework proposes an encrypted processor
design for use with TFHE, which requires the user to be
involved in the computation in order to get around the
termination problem [42]. The user must decrypt an en-
crypted signal after a predefined number of cycles to let
the cloud know if it has finished the computation or needs
to proceed further. This also poses a security risk for users,
as the cloud can abuse this mechanism to have the user
decrypt any ciphertext (including encrypted key material
inside of the evaluation key). Additionally, VSP incorpo-
rates an encrypted memory design that does not scale in
the encrypted domain: whenever memory is accessed, all
memory locations need to be updated or read, followed by
costly multiplexing operations to isolate the correct memory
region. Juliet, however, is completely offline, it does not
rely on expensive memory constructions and requires no
interaction from users besides encryption and decryption.
Further, we note that VSP and Romeo do not support mixed
operations, which prevents the cloud from being able to

supply their own inputs; for instance, in a machine learning
setting, the cloud would not be able to provide their own
weights to use in an encrypted classification procedure.

Lastly, three prior works support both arithmetic and
Boolean operations. In the case of Cingulata [36], either BFV
or TFHE is chosen prior to compilation; however, Cingulata
does not support GPU backends and must be recompiled
for every program. Likewise, E3 [37] is a C++ framework
capable of bridging, which involves switching from binary
to arithmetic ciphertexts. Whereas E3 only works with C++,
any arbitrary front-end can be constructed for Juliet. Ad-
ditionally, we note that Juliet with a CPU backend is an
order of magnitude faster than E3 for the SIMON benchmark
(Fig. 10). A third work is T2 [29] which incorporates an HE
compiler with support for integer, binary, and floating point
encodings; however, T2 does not offer GPU support, which
is a major benefit of Juliet.

8 CONCLUDING REMARKS

In this work, we propose a novel encrypted processor design
and an execution engine for general-purpose encrypted
computation on CPUs and GPUs, which enables secure out-
sourcing to cloud servers. Our processor is complemented
by an expressive assembly language targeting encrypted
data and a bespoke compiler to convert high-level programs
into our encrypted assembly. For validation, we employ
benchmarks from TERMinator and realistic algorithms on
encrypted data, and demonstrate significant performance
and flexibility benefits compared to related works.
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